If Tμ is a Fourier multiplier such that μ is any (possibly unbounded) symbol with uniformly bounded q-variation on dyadic coronas, we prove that the commutator [T, Tμ] = TTμ−TμT is bounded on the Besov space B p (R ), if T is any bounded linear operator on a couple of Besov spaces Bj ,rj p (R) (j = 0, 1, and 0 < σ1 < σ < σ0).