A coarse structure $ \mathcal{E}$ on a set $X$ is called finitary if, for each entourage $E\in \mathcal{E}$, there exists natural number $n$ such that E[x]< n $x\in X$. By approximation of \mathcal{E}^\prime$, we mean any \mathcal{E}\subseteq \mathcal{E}^\prime$.If $\mathcal{E}^\prime$ has countable base and $E[x]$ finite X$ then \mathcal{E}^\prime$has cellular the relations linkness subsets...