نتایج جستجو برای: cluster reduction

تعداد نتایج: 685453  

2014
Vaibhav Jha Mohit Jha G K Sharma

In Network on Chip (NoC) rooted system, energy consumption is affected by task scheduling and allocation schemes which affect the performance of the system. In this paper we test the pre-existing proposed algorithms and introduced a new energy skilled algorithm for 3D NoC architecture. An efficient dynamic and cluster approaches are proposed along with the optimization using bio-inspired algori...

2003
Matthew Brand Kun Huang

Spectral methods use selected eigenvectors of a data affinity matrix to obtain a data representation that can be trivially clustered or embedded in a low-dimensional space. We present a theorem that explains, for broad classes of affinity matrices and eigenbases, why this works: For successively smaller eigenbases (i.e., using fewer and fewer of the affinity matrix’s dominant eigenvalues and ei...

Journal: :CoRR 2015
Lee Zamparo Zhaolei Zhang

High-content screening uses large collections of unlabeled cell image data to reason about genetics or cell biology. Two important tasks are to identify those cells which bear interesting phenotypes, and to identify sub-populations enriched for these phenotypes. This exploratory data analysis usually involves dimensionality reduction followed by clustering, in the hope that clusters represent a...

2008
Alvina Goh René Vidal

We present an algorithm for grouping families of probability density functions (pdfs). We exploit the fact that under the square-root re-parametrization, the space of pdfs forms a Riemannian manifold, namely the unit Hilbert sphere. An immediate consequence of this re-parametrization is that different families of pdfs form different submanifolds of the unit Hilbert sphere. Therefore, the proble...

Journal: :CoRR 2013
Xiao-Lei Zhang

In this paper, we propose an extremely simple deep model for the unsupervised nonlinear dimensionality reduction – deep distributed random samplings. First, its network structure is novel: each layer of the network is a group of mutually independent k-centers clusterings. Second, its learning method is extremely simple: the k centers of each clustering are only k randomly selected examples from...

Journal: :Neural Computation 2003
Mikhail Belkin Partha Niyogi

One of the central problems in machine learning and pattern recognition is to develop appropriate representations for complex data. We consider the problem of constructing a representation for data lying on a lowdimensional manifold embedded in a high-dimensional space. Drawing on the correspondence between the graph Laplacian, the Laplace Beltrami operator on the manifold, and the connections ...

2015
Xiaojun Chang Feiping Nie Zhigang Ma Yi Yang Xiaofang Zhou

Spectral clustering is a fundamental technique in the field of data mining and information processing. Most existing spectral clustering algorithms integrate dimensionality reduction into the clustering process assisted by manifold learning in the original space. However, the manifold in reduced-dimensional subspace is likely to exhibit altered properties in contrast with the original space. Th...

2008
Richard Socher Matthias Hein

This report gives an introduction to diffusion maps, some of their underlying theory, as well as their applications in spectral clustering. First, the shortcomings of linear methods such as PCA are shown to motivate the use of graph-based methods. We then explain Locally Linear Embedding [9], Isomap [11] and Laplacian eigenmaps [1], before we give details on diffusion maps and anisotropic diffu...

2004
Miguel Á. Carreira-Perpiñán Richard S. Zemel

Many machine learning algorithms for clustering or dimensionality reduction take as input a cloud of points in Euclidean space, and construct a graph with the input data points as vertices. This graph is then partitioned (clustering) or used to redefine metric information (dimensionality reduction). There has been much recent work on new methods for graph-based clustering and dimensionality red...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید