نتایج جستجو برای: basis function neural network

تعداد نتایج: 2248031  

1999
Alfred Strey

In this article the neural network speciication language EpsiloNN is presented. From an abstract speciication that is independent of the target computer architecture, a simulation source program for a workstation or a parallel computer can be generated. Neurocomputers requiring xed-point data types and arithmetic are supported too. The language design is based on an uniied neural network model ...

1999
I K Kapageridis

This paper introduces a neural network approach to the problem of ore grade estimation. The system under consideration consists of three neural network modules each responsible for a different area of the deposit, depending on the sampling density. Octant and quadrant search is used as a way of presenting input patterns to the modules. Both radial basis function networks and multi-layered perce...

1995
Allan Pinkus

In this report we will review some density problems in multivariate approximation. Some of these problems are related to approximation by radial basis functions and ridge functions. Others are motivated by various mathematical models in the theory of (artificial) neural networks and computerized tomography. §

2010
Nardênio A. Martins Ebrahim S. Elyoussef Douglas W. Bertol Edson R. De Pieri Ubirajara F. Moreno Eugênio B. Castelan

Abstract In this paper, a trajectory tracking control for a nonholonomic mobile robot subjected to kinematic disturbances is proposed. A variable structure controller based on the sliding mode theory is used, and applied to compensate these disturbances. To minimize the problems found in practical implementations of the classical variable structure controllers, and eliminate the chattering phen...

2011
Joseph Raj M. J. L. Orr Pei-Chann Chang Yen-Wen Wang Chi-Yang Tsai

This paper presents a novel approach for classifying the sales data using neural networks, whose result may be helpful in making sales data analysis and optimizing the sales. Radial Basis Function neural networks are widely used for classification problems with multi-class attributes because of their gradient-descent feature. Our objective is to classify the sales data into three classes: high ...

Journal: :Artificial intelligence in medicine 1994
Georg Dorffner Gerold Porenta

In this paper we present an extensive comparison between several feedforward neural network types in the context of a clinical diagnostic task, namely the detection of coronary artery disease (CAD) using planar thallium-201 dipyridamole stress-redistribution scintigrams. We introduce results from well-known (e.g. multilayer perceptrons or MLPs, and radial basis function networks or RBFNs) as we...

2015
Priyanka Parvathy

Since its emergence from the early 1980s, the field of Human Computer Interaction has moved on and advanced in many significant ways. It has opened up a world in which communication between human and computer has become easier and richer. Among the different modes of interaction, Gestures provide the most natural and convenient way of communication. Hence gesture recognition has been extensivel...

2009
K. Ghorbanian M. Gholamrezaei

The application of artificial neural network to compressor performance map prediction is investigated. Different types of artificial neural networks such as general regression neural network, rotated general regression neural network proposed by the authors, radial basis function network, and multilayer perceptron network are considered. Two different models are utilized in simulating the perfo...

1996
Norbert Jankowski

The most common transfer functions in neural networks are of the sigmoidal type. In this article other transfer functions are considered. Advantages of simple gaussians, giving hyperelliptical densities, and gaussian bar functions (sums of one-dimensional gaussians) are discussed. Bi-radial functions are formed from products of two sigmoids. Product of M bi-radial functions in N -dimensional pa...

Prediction of the production rate of the cutting dimensional stone process is crucial, especially when chain saw machines are used. The cutting dimensional rock process is generally a complex issue with numerous effective factors including variable and unreliable conditions of the rocks and cutting machines. The Group Method of Data Handling (GMDH) type of neural network and Radial Basis Functi...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->