We assign a quasisymmetric function to any double poset (that is, every finite set endowed with two partial orders) and any weight function on its ground set. This generalizes well-known objects such as monomial and fundamental quasisymmetric functions, (skew) Schur functions, dual immaculate functions, and quasisymmetric (P, ω)-partition enumerators. We then prove a formula for the antipode of...