نتایج جستجو برای: anfis subtractive clustering method

تعداد نتایج: 1711021  

2011
S R Navghare

Conventional control algorithms used in pH control systems give inefficient performance, leading to use of large mixers. To improve the neutralization control process, an ANFIS based advanced controller has been proposed. In this paper, method of design of adaptive controller based on neurofuzzy technique is presented. The method uses ANFIS methodology to automatically generate fuzzy rule base ...

Journal: :Neural networks : the official journal of the International Neural Network Society 2010
K.-L. Du

Clustering is a fundamental data analysis method. It is widely used for pattern recognition, feature extraction, vector quantization (VQ), image segmentation, function approximation, and data mining. As an unsupervised classification technique, clustering identifies some inherent structures present in a set of objects based on a similarity measure. Clustering methods can be based on statistical...

2002
Peter Grabusts

A neural network can approximate a function, but it is impossible to interpret the result in terms of natural language. The consolidation of neural networks and fuzzy logic in neurofuzzy models provides learning as well as readability. This paper aims at modeling the input-output relationship with fuzzy IF-THEN rules by using fuzzy clustering technique. The main difference between fuzzy cluster...

2002
Peter Grabusts

A neural network can approximate a function, but it is impossible to interpret the result in terms of natural language. The consolidation of neural networks and fuzzy logic in neurofuzzy models provides learning as well as readability. This paper aims at modeling the input-output relationship with fuzzy IF-THEN rules by using fuzzy clustering technique. The main difference between fuzzy cluster...

Journal: :Computers in biology and medicine 2007
Abdulhamit Subasi

Intelligent computing tools such as artificial neural network (ANN) and fuzzy logic approaches are demonstrated to be competent when applied individually to a variety of problems. Recently, there has been a growing interest in combining both these approaches, and as a result, neuro-fuzzy computing techniques have been evolved. In this study, a new approach based on an adaptive neuro-fuzzy infer...

2011
Qing Yang Jingran Guo Dongxu Zhang Chang Liu

Fault diagnosis is essential for the reliable, safe, and efficient operation of the plant and for maintaining quality of the products in industrial system. This paper presents an ensemble fault diagnosis algorithm based on fuzzy c-means algorithm (FCM) with the Optimal Number of Clusters (ONC) and probabilistic neural network (PNN), called FCM-ONC-PNN. In clustering methods, the estimation of t...

2012
Boumediene Selma Samira Chouraqui

Nonlinear system identification is becoming an important tool which can be used to improve control performance. This paper describes the application of adaptive neuro-fuzzy inference system (ANFIS) model for controlling a car. The vehicle must follow a predefined path by supervised learning. Back-propagation gradient descent method was performed to train the ANFIS system. The performance of the...

Journal: :IJMEI 2013
Vikneswaran Vijean M. Hariharan Sazali Yaacob Mohd Nazri B. Sulaiman

Pattern reversal visually evoked potentials (VEPs) provide valuable information about the visual nerves pathways and is a promising field to be explored for the investigation of vision impairments. The conventional method of analysis however, is centred on the detection of amplitude and latency values from the averaged VEP responses. This paper proposes alternative method of analysis using Stoc...

2005
Kerim Guney Nurcan Sarikaya

A new method for computing the resonant frequency of the circular microstrip antenna, based on the adaptive neuro-fuzzy inference system (ANFIS), is presented. A hybrid learning algorithm is used to identify the parameters of ANFIS. The results of the new method are in excellent agreement with the experimental results reported elsewhere.

2015
Ahmet Kayabasi Ali Akdagli

In this study, three robust predicting methods, namely artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for computing the resonant frequency of A-shaped compact microstrip antennas (ACMAs) operating at UHF band. Firstly, the resonant frequencies of 144 ACMAs with various dimensions and electrical parameters were simulated ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید