نتایج جستجو برای: acyclic edge coloring
تعداد نتایج: 131642 فیلتر نتایج به سال:
We prove that the list chromatic index of a graph of maximum degree and treewidth ≤ √2 − 3 is ; and that the total chromatic number of a graph of maximum degree and treewidth ≤ /3 + 1 is + 1. This improves results by Meeks and Scott. C © 2015 Wiley Periodicals, Inc. J. Graph Theory 81: 272–282, 2016
We prove that the list chromatic index of a graph of maximum degree ∆ and treewidth ≤ √ 2∆ − 3 is ∆; and that the total chromatic number of a graph of maximum degree ∆ and treewidth ≤ ∆/3 + 1 is ∆ + 1. This improves results by Meeks and Scott.
In this paper, we aim to introduce the group version of edge coloring and list edge coloring, and prove that all 2-degenerate graphs along with some planar graphs without adjacent short cycles is group (∆(G) + 1)-edgechoosable while some planar graphs with large girth and maximum degree is group ∆(G)-edge-choosable.
A facial parity edge coloring of a 2-edge-connected plane graph is such an edge coloring in which no two face-adjacent edges (consecutive edges of a facial walk of some face) receive the same color, in addition, for each face f and each color c, either no edge or an odd number of edges incident with f is colored with c. It is known that any 2-edgeconnected plane graph has a facial parity edge c...
Abstract. A skew edge coloring of a graph G is defined to be a set of two edge colorings such that no two edges are assigned the same unordered pair of colors. The skew chromatic index s(G) is the minimum number of colors required for a skew edge coloring of G. In this paper, an algorithm is determined for skew edge coloring of circular ladder graphs. Alsothe skew chromatic index of circular la...
A graph G is called a complete k-partite (k ≥ 2) graph if its vertices can be partitioned into k independent sets V1, . . . , Vk such that each vertex in Vi is adjacent to all the other vertices in Vj for 1 ≤ i < j ≤ k. A complete k-partite graph G is a complete balanced kpartite graph if |V1| = |V2| = · · · = |Vk|. An edge-coloring of a graph G with colors 1, . . . , t is an interval t-colorin...
An edge coloring of a graph G with colors 1, 2, . . . , t is called an interval t-coloring if for each i ∈ {1, 2, . . . , t} there is at least one edge of G colored by i, and the colors of edges incident to any vertex of G are distinct and form an interval of integers. A graph G is interval colorable, if there is an integer t ≥ 1 for which G has an interval t-coloring. Let N be the set of all i...
An edge-coloring of a graph G with colors 1, . . . , t is an interval t-coloring if all colors are used, and the colors of edges incident to each vertex of G are distinct and form an interval of integers. A graph G is interval colorable if it has an interval t-coloring for some positive integer t. The problem of deciding whether a bipartite graph is interval colorable is NP-complete. The smalle...
An adjacent vertex distinguishing edge-coloring or an avd-coloring of a simple graph G is a proper edge-coloring of G such that no pair of adjacent vertices meets the same set of colors. We prove that every graph with maximum degree ∆ and with no isolated edges has an avd-coloring with at most ∆ + 300 colors, provided that ∆ > 1020. AMS Subject Classification: 05C15
We obtain bounds for the coloring numbers of products of trees for three closely related types of colorings: acyclic, distance 2, and L(2, 1).
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید