نتایج جستجو برای: abelian

تعداد نتایج: 21031  

2001
M. I. Polikarpov T. Suzuki A. I. Veselov V. I. Zakharov

We study the Abelian and non-Abelian action density near the monopole in the maximal Abelian gauge of SU(2) lattice gauge theory. We find that the non-Abelian action density near the monopoles belonging to the percolating cluster decreases when we approach the monopole center. Our estimation for the monopole radius is R ≈ 0.06 fm.

2002
V. I. Zakharov

We study the Abelian and non-Abelian action density near the monopole in the maximal Abelian gauge of SU(2) lattice gauge theory. We find that the non-Abelian action density near the monopoles belonging to the percolating cluster decreases when we approach the monopole center. Our estimate of the monopole radius is R ≈ 0.04 fm.

Journal: :Nuclear Physics B - Proceedings Supplements 1999

Journal: :Journal of Pure and Applied Algebra 2021

Sets with a self-distributive operation (in the sense of ( ◃ b ) c = ), in particular quandles, appear knot and braid theories, Hopf algebra classification, study Yang–Baxter equation, other areas. An important invariant quandles is their structure group. The group finite quandle known to be either “boring” (free abelian), or “interesting” (non-abelian torsion). In this paper we explicitly desc...

Journal: :journal of linear and topological algebra (jlta) 0
a gholamian farhangian university, shahid bahonar campus, birjand, iran m. m nasrabadi university of birjand, birjand, iran

let $g$ be a group and $aut(g)$ be the group of automorphisms of‎‎$g$‎. ‎for any natural‎‎number $m$‎, ‎the $m^{th}$-autocommutator subgroup of $g$ is defined‎‎as‎: ‎$$k_{m}(g)=langle[g,alpha_{1},ldots,alpha_{m}] |gin g‎,‎alpha_{1},ldots,alpha_{m}in aut(g)rangle.$$‎‎in this paper‎, ‎we obtain the $m^{th}$-autocommutator subgroup of‎‎all finite abelian groups‎.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه 1387

چکیده ندارد.

Journal: :Theor. Comput. Sci. 2016
Gabriele Fici Alessio Langiu Thierry Lecroq Arnaud Lefebvre Filippo Mignosi Jarkko Peltomäki Élise Prieur

Richomme, Saari and Zamboni (J. Lond. Math. Soc. 83: 79–95, 2011) proved that at every position of an infinite Sturmian word starts an abelian power of exponent k, for every positive integer k. Here, we improve on this result, studying the maximal exponent of abelian powers and abelian repetitions (an abelian repetition is the analogous of a fractional power in the abelian setting) occurring in...

‎Suppose $n$ is a fixed positive integer‎. ‎We introduce the relative n-th non-commuting graph $Gamma^{n} _{H,G}$‎, ‎associated to the non-abelian subgroup $H$ of group $G$‎. ‎The vertex set is $Gsetminus C^n_{H,G}$ in which $C^n_{H,G} = {xin G‎ : ‎[x,y^{n}]=1 mbox{~and~} [x^{n},y]=1mbox{~for~all~} yin H}$‎. ‎Moreover‎, ‎${x,y}$ is an edge if $x$ or $y$ belong to $H$ and $xy^{n}eq y^{n}x$ or $x...

Ngcibi, Murali and Makamba [Fuzzy subgroups of rank two abelian$p$-group, Iranian J. of Fuzzy Systems {bf 7} (2010), 149-153]considered the number of fuzzy subgroups of a finite abelian$p$-group $mathbb{Z}_{p^m}times mathbb{Z}_{p^n}$ of rank two, andgave explicit formulas for the cases when $m$ is any positiveinteger and $n=1,2,3$. Even though their method can be used for thecases when $n=4,5,l...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید