نتایج جستجو برای: گیرندههای ampa

تعداد نتایج: 7190  

Journal: :Neuron 2008
Akihiko S. Kato Edward R. Siuda Eric S. Nisenbaum David S. Bredt

AMPA-type glutamate receptors (GluRs) play major roles in excitatory synaptic transmission. Neuronal AMPA receptors comprise GluR subunits and transmembrane AMPA receptor regulatory proteins (TARPs). Previous studies identified five mammalian TARPs, gamma-2 (or stargazin), gamma-3, gamma-4, gamma-7, and gamma-8, that enhance AMPA receptor function. Here, we classify gamma-5 as a distinct class ...

2012
Andrei Rozov Rolf Sprengel Peter H. Seeburg

The GluA2 subunit in heteromeric alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor channels restricts Ca(2+) permeability and block by polyamines, rendering linear the current-voltage relationship of these glutamate-gated cation channels. Although GluA2-lacking synaptic AMPA receptors occur in GABA-ergic inhibitory neurons, hippocampal CA1 pyramidal cell synapses are wide...

2008
Beth Ann Ripley Marla Feller Chuck Stevens

Abstract: The establishment of functional neuronal circuits relies on the formation of excess synapses, followed by the elimination of inappropriate connections. Although the stabilization of presynaptic inputs is critical for the development of functional circuits, the signals that regulate presynaptic stability are not known. Here we report that synapse formation in cortical cultures is highl...

Journal: :The Journal of pharmacology and experimental therapeutics 2003
Kazushige Ohno Rie Tsutsumi Naoyuki Matsumoto Hiroshi Yamashita Yoko Amada Jun-ichi Shishikura Hiroshi Inami Shin-Ichi Yatsugi Masamichi Okada Shuichi Sakamoto Tokio Yamaguchi

The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor is thought to play an important role in the pathogenesis of several neurological disorders as well as normal brain function. The search for AMPA receptor antagonists as potential therapeutics is ongoing. Here, we describe the functional characterization of a novel noncompetitive AMPA receptor antagonist, 2-[N-(4-chloro...

2017
Irene Riva Clarissa Eibl Rudolf Volkmer Anna L Carbone Andrew Jr Plested

At synapses throughout the mammalian brain, AMPA receptors form complexes with auxiliary proteins, including TARPs. However, how TARPs modulate AMPA receptor gating remains poorly understood. We built structural models of TARP-AMPA receptor complexes for TARPs γ2 and γ8, combining recent structural studies and de novo structure predictions. These models, combined with peptide binding assays, pr...

Journal: :Neuron 1995
Jeffrey S. Diamond Craig E. Jahr

The contribution of intersynaptic transmitter diffusion to the AMPA receptor EPSC time course was studied in cultured CA1 hippocampal neurons. Reducing release probability 20-fold with cadmium did not affect the time course of the averaged AMPA receptor EPSC, even when receptor desensitization was blocked by cyclothiazide, suggesting that individual synapses contribute independently to the AMPA...

Journal: :Neuron 2003
Marcie Colledge Eric M. Snyder Robert A. Crozier Jacquelyn A. Soderling Yetao Jin Lorene K. Langeberg Hua Lu Mark F. Bear John D. Scott

PSD-95 is a major scaffolding protein of the postsynaptic density, tethering NMDA- and AMPA-type glutamate receptors to signaling proteins and the neuronal cytoskeleton. Here we show that PSD-95 is regulated by the ubiquitin-proteasome pathway. PSD-95 interacts with and is ubiquitinated by the E3 ligase Mdm2. In response to NMDA receptor activation, PSD-95 is ubiquitinated and rapidly removed f...

Journal: :Neuron 1998
Richard J O’Brien Sunjeev Kamboj Michael D Ehlers Kenneth R Rosen Gerald D Fischbach Richard L Huganir

Both theoretical and experimental work have suggested that central neurons compensate for changes in excitatory synaptic input in order to maintain a relatively constant output. We report here that inhibition of excitatory synaptic transmission in cultured spinal neurons leads to an increase in mEPSC amplitudes, accompanied by an equivalent increase in the accumulation of AMPA receptors at syna...

2013
Lucas R. Watterson M. Foster Olive

Positive allosteric modulators (PAMs) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and r...

Journal: :Molecular interventions 2003
José A Esteban

Most excitatory transmission in the brain is mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPA receptors). Therefore, the presence of these receptors at synapses has to be carefully regulated in order to ensure correct neuronal communication. Interestingly, AMPA receptors are not static components of synapses. On the contrary, they are co...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید