نتایج جستجو برای: کنترلر anfis
تعداد نتایج: 4014 فیلتر نتایج به سال:
This paper introduces the application of the hybrid approach Adaptive Neuro-Fuzzy Inference System (ANFIS) for fault classification and diagnosis in industrial actuator. The ANFIS can be viewed either as a fuzzy inference system, a neural network or fuzzy neural network (FNN). This paper integrates the learning capabilities of neural network to the robustness of fuzzy systems in the sense that ...
The measurement and prediction of dye concentration is important in the design, planning and management of wastewater treatment. Soft computing techniques can be used as a support tool for analyzing data and making prediction. In this study, Central Composite Design (CCD) and adaptive neuro-fuzzy inference system (ANFIS) are employed to identify and predict the output intensity ratio of light t...
-The accurate prediction of student academic performance is of importance to institutions as it provides valuable information for decision making in the admission process and enhances educational services by allocating customized assistance according to the predictions. The purpose of this study is to investigate the predictive ability of two models: the hierarchical ANFIS and ANN. We used prev...
During faulty condition voltage instability is one of the major crisis in power system networks. This study proposes a hybrid learning algorithm to improve the stability performance of a power system with Distributed Generations (DGs). Here the distribution system stability is maintained with reduced power loss using an Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and Particle Swarm Optimizat...
The ANFIS is the product of two methods, neural networks, and fuzzy systems. If both these intelligent methods are combined, better reasoning will be obtained in term of quality and quantity. In other words, both fuzzy reasoning and neural network calculation will be available simultaneously [7]. This ANFIS technique has been successfully applied by many researchers for sensor-based autonomous ...
Texture features play a predominant role in land cover classification of remotely sensed images. In this study, for extracting texture features from data intensive remotely sensed image, Gabor wavelet has been used. Gabor wavelet transform filters frequency components of an image through decomposition and produces useful features. For classification of fuzzy land cover patterns in the remotely ...
This paper presents an adaptive neuro-fuzzy inference system (ANFIS) for USD/JPY exchange rates forecasting. Previous work often used time series techniques and neural networks (NN). ANFIS can be used to better explain solutions to users than completely black-box models, such as NN. The proposed neurofuzzy rule based system applies some technical and fundamental indexes as input variables. In o...
Power demand forecasting is a significant factor in the planning and economic and secure operation of modern power system. This research work has compared different forecasting techniques and opted to find out better technique in context of power generation, which varies rapidly from time to time. The dataset has been generated from yearly demand of electricity of Bangladesh for last five years...
In the recent years there is a lot of research happening to predict wind speed with several mathematical methods and biologically inspired computing techniques to reduce the prediction error. A new strategy in wind speed prediction is proposed in this paper and the Adaptive Neuro-Fuzzy Inference System (ANFIS) is applied to forecast the speed of wind. ANFIS can forecast very well of the next va...
Fuzzy inference systems have been applied in recent years in various medical fields due to their ability to obtain good results featuring white-box models. Adaptive Neuro-Fuzzy Inference System (ANFIS), which combines adaptive neural network capabilities with the fuzzy logic qualitative approach, has been previously used in modelling survival of breast cancer patients based on patient groups de...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید