نتایج جستجو برای: ژن fxn
تعداد نتایج: 16212 فیلتر نتایج به سال:
Friedreich's ataxia, an autosomal recessive neurodegenerative disorder characterized by progressive gait and limb ataxia, cardiomyopathy, and diabetes mellitus, is caused by decreased frataxin production or function. The structure of human frataxin, which we have determined at 1.8-A resolution, reveals a novel protein fold. A five-stranded, antiparallel beta sheet provides a flat platform, whic...
Oxidative stress and protein carbonylation is implicated in aging and various diseases such as neurodegenerative disorders, diabetes, and cancer. Therefore, the accurate identification and quantification of protein carbonylation may lead to the discovery of new biomarkers. We have developed a new method that combines avidin affinity selection of carbonylated proteins with iTRAQ labeling and LC ...
Friedreich ataxia (FRDA) is a severe genetic neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin. To date, there is no therapy to treat this condition. The amount of residual frataxin critically affects the severity of the disease; thus, attempts to restore physiological frataxin levels are considered therapeutically relevant. Frataxin levels are control...
Background Friedreich's ataxia (FA) is a rare autosomal recessive mitochondrial disease most commonly due to triplet repeat expansion guanine-adenine-adenine (GAA) in the FXN gene. Cardiac major cause of death, patients with reduced left ventricular ejection fraction (LVEF) having worse prognosis. Longitudinal strain (LS) appeared be better predictor outcome than LVEF different diseases. We com...
Decreased expression of Yfh1p in the budding yeast, Saccharomyces cerevisiae, and the orthologous human gene frataxin results in respiratory deficiency and mitochondrial iron accumulation. The absence of Yfh1p decreases mitochondrial iron export. We demonstrate that decreased expression of Nfs1p, the yeast cysteine desulfurase that plays a central role in Fe-S cluster synthesis, also results in...
Oxidative stress is actively involved in Friedreich's Ataxia (FA), thus pharmacological targeting of the antioxidant machinery may have therapeutic value. Here, we analyzed the relevance of the antioxidant phase II response mediated by the transcription factor Nrf2 on frataxin-deficient cultured motor neurons and on fibroblasts of patients. The in vitro treatment of the potent Nrf2 activator su...
Progress in understanding the mechanism underlying the enzymatic formation of iron-sulfur clusters is difficult since it involves a complex reaction and a multi-component system. By exploiting different spectroscopies, we characterize the effect on the enzymatic kinetics of cluster formation of CyaY, the bacterial ortholog of frataxin, on cluster formation on the scaffold protein IscU. Frataxin...
BACKGROUND Friedreich's ataxia (FRDA) is a neurodegenerative disorder caused by decreased expression of the protein frataxin, recently described to be an iron chaperone for the assembly of iron-sulphur clusters in the mitochondria, causing iron accumulation in mitochondria, oxidative stress and cell damage. Searching for compounds that could possibly influence frataxin expression, we found that...
The DNA abnormality found in 98% of Friedreich's ataxia (FRDA) patients is the unstable hyperexpansion of a GAA.TTC triplet repeat in the first intron of the frataxin gene. Expanded GAA.TTC repeats result in decreased transcription and reduced levels of frataxin protein in affected individuals. Beta-alanine-linked pyrrole-imidazole polyamides bind GAA.TTC tracts with high affinity and disrupt t...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید