نتایج جستجو برای: معادلات پخش کسری
تعداد نتایج: 31687 فیلتر نتایج به سال:
تاکنون روش تجزیه آدومیان بهطور گستردهای برای حل انواع معادلات دیفرانسیل بهکار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روشهای دیگر ازجمله روشهای هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جوابهای تحلیلی-تقریبی از انواع معادلات دیفرانسیل میباشد، در این مقاله سعی شده با بهکارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...
در این پایان نامه یک روش عددی برای حل معادلات کسری-زمانی و کسری-فضایی برگر egin{equation*} d_t^{alpha}u+varepsilon uu_{x}= u u_{xx}+eta d_x^{eta}u, end{equation*} معادله ی کسری-زمانی و کسری-فضایی پوآسن egin{equation*} d_x^{eta}u + d_t^{alpha}u = f(x,t), end{equation*} و معادله ی کسری-زمانی انتشار egin{equation*} d_t^alpha u+u=k abla^2 u + f(x,t), end{equation*} ...
در این پایان نامه، روش بسط تیلور برای حل تقریبی یک رده از معادلات انتگرال دیفرانسیل کسری خطی شامل انواع فردهلم و ولترا ارائه شده است. با استفاده از بسط تیلورمرتبه mام تابع مجهول در یک نقطه دلخواه، معادله انتگرال دیفرانسیل کسری خطی به طور تقریبی می تواند به یک دستگاه از معادلات برای تابع مجهول خودش و مشتقات مرتبه mام اش تحت شرایط اولیه تبدیل شود. این روش یک فرم حل ساده و بسته برای معادله انتگرال...
در این پایان نامه به معرفی توابع حساب کسری و برخی از خواص آنها پرداخته ایم سپس مفهوم مشتق و انتگرال از مرتبه غیر صحیح را معرفی و همچنین خواص و ارتباط بین آنها را مطرح کرده ایم و نحوه حل معادلات دیفرانسیل کسری به روش تجزیه آدومیان، روش اختلال هموتوپی، روش تکرار تغییرات هی، روش آنالیز هموتوپی و روش تبدیل دیفرانسیل را بیان نموده و سپس بهبود این روشهای تکراری معرفی و با چند مثال کارایی این بهبود ها...
از لحاظ توسعه روش های حل معادلات دیفرانسیل پاره ای در قرن نوزدهم میلادی با روش جدا سازی متغیرها برای معادلات خطی بوسیله دالامبر،اویلر و سپس کارهای فوریه برای معادله حرارت ادامه یافت که به دنبال آن همگرایی سری های فوریه و انتگرال های فوریه مطرح شد و سپس تابع های هارمونیک حقیقی دو بعدی و توابع مختلط از یک متغیر مختلط در کار های ریمان در سال 1851 گسترش یافت و بالاخره گسترش بیشتر آن ها توسط نویما...
در این پایان نامه ابتدا مفهوم حلال کسری را معرفی می کنیم و بعضی ویژگی های آن را بدست می آوریم. قضیه ای را بیان می کنیم که مشخص می کند تحت چه شرایطی یک عملگر خطی می تواند مولد یک حلال کسری بطور نمایی کراندار باشد. در ادامه معادله کوشی کسری همگن از مرتبه ? را مورد بررسی قرار می دهیم و نشان می دهیم این معادله خوش وضع است اگر و تنها اگر عملگر ضریب آن مولد یک حلال کسری از مرتبه ? باشد. سپس بحث وجو...
این پایان نامه در چهار فصل تدوین شده است، که در آن هم ارزی توپولوژیکی سیستم های تناوبی, نظریه فلوکه و پایداری معادلات انتگرال-دیفرانسیل پذیر غیرخطی را مورد بحث و برسی قرار می دهیم. در ابتدا، مفاهیم اولیه و تعاریف مقدماتی مشتقات و انتگرال های کسری و ویژگی های آن ها را بیان می کنیم, سپس سیستم فلوکه کسری را معرفی و شرایط لازم و کافی برای پایداری سیستم فلوکه کسری را بدست می آوریم. در ادامه با کمک ت...
آرایه ای متشکل از دو پیوندگاه جوزفسون را در نظر می گیریم که توسط پیوند سومی در یک یاخته مثلثی به هم جفت شده اند. شرایط بروز همنوازی از مرتبه غیرصحیح را بررسی کرده و نشان می دهیم وجود عدم تقارن در آرایه موجب پدیدار شدن مشتقهای مرتبه دوم و بالاتر یا جملات غیر سینوسی در معادلات توصیف کننده سیستم شده که در حضور میدان متناوب خارجی منجر به پله های کسری شاپیرو می شوند .
مسایل اشتورم-لیوول که به مسایل مقدار ویژه نیز موسوم هستند در بسیاری از مسایل فیزیکی و مهندسی و ریاضیات کاربردی ظاهر می شوند و بسیاری از معادلات جزو دسته بندی معادلات اشتورم-لیوویل قرار می گیرند یا با تغییراتی قابل تبدیل به معادله اشتورم-لیوویل هستند. هدف از حل این مسایل در حالت مستقیم پیدا کردن مقادیر ویژه و توابع ویژه ی عملگر اشتورم-لیوویل می باشد. در این پایان نامه به حل مسائل اشتورم-لیوویل ک...
باسمه تعالی در این پایان نامه بررسی تغریف هایی از انتگرال و مشتقهای کسری از جمله تعریف ریمان-لیوویل ، تعریف کاپوتا و تعریف جدیدی از انتگرال و مشتق های کسری که در سال 2014 توسط خلیل و همکارانش ارائه شده است ، می پردازیم همپنین به حل پندید معادله دیفرانسیل از مرتبه کسری با تغریف های ذکر شده پرداخته شده است برای خل این معادلات دیفرانسیل روش هموتوپی لاپلاس را به کار گرفتیم و برای حل دستگاه هایی از...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید