نتایج جستجو برای: ضرایب mfcc
تعداد نتایج: 15840 فیلتر نتایج به سال:
Speech Synthesis (SS) and Voice Conversion (VC) presents a genuine risk of attacks for Automatic Speaker Verification (ASV) technology. In this paper, we use our recently proposed unsupervised filterbank learning technique using Convolutional Restricted Boltzmann Machine (ConvRBM) as a frontend feature representation. ConvRBM is trained on training subset of ASV spoof 2015 challenge database. A...
A comprehensive computational model of the human auditory peripherals (AIM) was applied to extract basic features of speech sounds aiming at optimal unit selection in concatenative speech synthesis. The performance of AIM was compared to that of a purely physical model (LPC) as well as that of an approximate auditory model (MFCC) by basic perceptual experiments. While a significant advantage of...
Human recognizes speech emotions by extracting features from the speech signals received through the cochlea and later passed the information for processing. In this paper we propose the use of Mel-Frequency Cepstral Coefficient (MFCC) to extract the speech emotion information to provide both the frequency and time domain information for analysis. Since features extracted using the MFCC simulat...
Phone Log-Likelihood Ratios (PLLR) have been recently proposed as alternative features to MFCC-SDC for iVector Spoken Language Recognition (SLR). In this paper, PLLR features are first described, and then further evidence of their usefulness for SLR tasks is provided, with a new set of experiments on the Albayzin 2010 LRE dataset, which features wide-band multi speaker TV broadcast speech on si...
Principal Component analysis (PCA) is useful in identifying patterns in data, and expressing data in a manner which highlights their similarities and differences. This concept was extracted to reduce high dimensional Mel‟s Frequency Cepstral Coefficients (MFCC) into low dimensional feature vectors. Since MFCC‟s are high in dimensions and truncation of these dependent coefficients may lead to er...
Phoneme is the smallest contrastive unit in the sound system of a language. Moreover, it has a meaningful role in speech recognition. In this study, we are interesting for phonemes recognition of Timit database using HTK toolkit for HMM. The main goal is to determine the optimal parameters for the recognizer. For this reason, different speech analysis techniques were operated such as Mel Freque...
This paper deals with implementing an efficient optimization technique for designing an Automatic Speaker Recognition (ASR) System, which uses average F-ratio score of TESPAR(Time Encoded Signal Processing And Recognition) and MFCC(Mel frequency Cepstral Coefficients) features, to yield high recognition accuracy even in adverse noisy conditions. A new ranking scheme is also proposed in order to...
requires a robust feature extraction unit followed by a speaker modeling scheme for generalized representation of these features. Over the years, Mel-Frequency Cepstral Coefficients (MFCC) modeled on the human auditory system has been used as a standard acoustic feature set for speech related applications. On a recent contribution by authors, it has been shown that the Inverted Mel-Frequency Ce...
In this paper, robust front end features are proposed for improvement in speaker identification (SI) performance by considering the factors of real world situations, like mismatch between training and testing conditions. The most commonly used MFCC features are very much sensitive to effects such as channel and environment mismatch. Characteristics of speech gets changed with room acoustics, ch...
Speech recognition is an important field of digital signal processing. Automatic Speaker Recognition (ASR) objective is to extract features, characterize and recognize speaker. Mel Frequency Cepstral Coefficients (MFCC) is most widely used feature vector for ASR. MFCC is used for designing a text dependent speaker identification system. In this paper the DSP processor TMS320C6713 with Code Comp...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید