نتایج جستجو برای: سم عصبی mptp
تعداد نتایج: 19772 فیلتر نتایج به سال:
The dose- and time-dependent changes of in vivo radioligand binding to the neuronal membrane dopamine transporter (DAT) and vesicular monoamine transporter type 2 (VMAT2) were examined in mouse brain after MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) administrations. Regional brain distribution studies were done in male C57BL/6 mice using simultaneous injections of d-threo-[(3)H]methylph...
Chronic ethanol consumption increases mitochondrial oxidative stress and sensitivity to form the mitochondrial permeability transition pore (MPTP). The mechanism responsible for increased MPTP sensitivity in ethanol-exposed mitochondria and its relation to mitochondrial Ca(2+) handling is unknown. Herein, we investigated whether increased sensitivity to MPTP induction in liver mitochondria from...
In animal models of Parkinson's disease (PD), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is one of the most widely used agents that damages the nigrostriatal dopaminergic pathway. However, brain structural changes in response to MPTP remain unclear. This study aimed to investigate in vivo longitudinal changes in gray matter (GM) volume and white matter (WM) microstructure in primate mo...
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) damages the nigrostriatal dopaminergic pathway as seen in Parkinson's disease (PD), a common neurodegenerative disorder with no effective protective treatment. Consistent with a role of glial cells in PD neurodegeneration, here we show that minocycline, an approved tetracycline derivative that inhibits microglial activation independently of it...
The 'mitochondrial permeability transition', characterized by a sudden induced change of the inner mitochondrial membrane permeability for water as well as for small substances (</=1.5 kDa), has been known for three decades. Research interest in the entity responsible for this phenomenon, the 'mitochondrial permeability transition pore' (mPTP), has dramatically increased after demonstration tha...
Nigrostriatal degeneration, the pathological hallmark of Parkinson's disease (PD), is mirrored by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication. MPTP-treated animals show the common behavioral, motor, and pathological features of human disease. We demonstrated previously that adoptive transfer of Copaxone (Cop-1) immune cells protected the nigrostriatal dopaminergic pathway i...
Elucidation of the biochemical steps leading to the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP)-induced degeneration of the nigro-striatal dopamine (DA) pathway has provided new clues to the pathophysiology of Parkinson's Disease (PD). In line with the enhancement of MPTP toxicity by diethyldithiocarbamate (DDC), here we demonstrate how other CYP450 (2E1) inhibitors, such as diallyl sul...
Multidrug resistance (MDR) is a critical problem in the chemotherapy of cancers. Human hepatocellular carcinoma (HCC) responds poorly to chemotherapy owing to its potent MDR. Chemotherapeutic drugs primarily act by inducing apoptosis of cancer cells, and defects in apoptosis may result in MDR. Mitochondrial permeability transition (mPT) is implicated as an important event in the control of cell...
Developing an animal model for a specific disease is very important in the understanding of the underlying mechanism of the disease and allows testing of newly developed new drugs before human application. However, which of the plethora of experimental animal species to use in model development can be perplexing. Administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a very we...
1-Methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin that selectively damages dopaminergic neurons in the substantia nigra pars compacta and induces Parkinson's like symptoms in rodents. Quercetin (QC) is a natural polyphenolic bioflavonoid with potent antioxidant and anti-inflammatory properties but lacks of clinical attraction due to low oral bioavailability. Piperine is a well ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید