In this paper, the notion of direct sum of branches in hks is introduced and some related properties are investigated. Applying this notion to lower hyper $BCK$-semi lattice, a necessary condition for a hi to be prime is given. Some properties of hkc are studied. It is proved that if $H$ is a hkc and $[a)$ is finite for any $ain H$, then $mid Aut(H)mid=1$.