We continue the study from [1], by studying equations of type $\psi(n) = \dfrac{k+1}{k} \cdot \ n+a,$ $a\in \{0, 1, 2, 3\},$ and $\varphi(n) \dfrac{k-1}{k} n-a,$ 3\}$ for $k > 1,$ where $\psi(n)$ $\varphi(n)$ denote Dedekind, respectively Euler's, arithmetical functions.