نتایج جستجو برای: using a multivariate garch models full
تعداد نتایج: 14262135 فیلتر نتایج به سال:
Factor models are well established as promising alternatives to obtain covariance matrices of portfolios containing a very large number of assets. In this paper, we consider a novel multivariate factor GARCH specification with a flexible modeling strategy for the common factors, for the individual assets, and for the factor loads. We apply the proposed model to obtain minimum variance portfolio...
A new variant of the ARCH class of models for forecasting conditional variance, to be called the Generalized AutoRegressive Conditional Heteroskedasticity Parkinson Range (GARCH-PARK-R) Model, is proposed. The GARCH-PARK-R model, utilizing the extreme values, is a good alternative to the Realized Volatility that requires a large amount of intra-daily data, which remain relatively costly and are...
F orecasting the volatility of a financial asset has wide implications in finance. Conditional variance extracted from the GARCH framework could be a suitable proxy of financial asset volatility. Option pricing, portfolio optimization, and risk management are examples of implications of conditional variance forecasting. One of the most recent methods of volatility forecasting is Real...
GARCH-type models have been highly developed since Engle [1982] presented ARCH process 30 years ago. Different kinds of GARCH-type models are applicable to different kinds of research purposes. As documented by many literatures that short-memory processes with level shifts will exhibit properties that make standard tools conclude long-memory is present. Therefore, in this paper, we want to fore...
Volatility models have been playing an important role in economics and finance. Using a multivariate generalized spectral approach, we propose a new class of generally applicable omnibus tests for univariate and multivariate volatility models. Both GARCH models and stochastic volatility models are covered. Our tests have a convenient asymptotic null N(0,1) distribution, and can detect a wide ra...
This paper investigates the forecasting ability of five different versions of GARCH models. The five GARCH models applied are bivariate GARCH, GARCH-ECM, BEKK GARCH, GARCH-X and GARCH-GJR. Forecast errors based on four emerging stock futures portfolio return (based on forecasted hedge ratio) forecasts are employed to evaluate out-ofsample forecasting ability of the five GARCH models. Daily data...
First Jump Approximation of a Lévy Driven SDE and an Application to Multivariate ECOGARCH Processes
The first jump approximation of a pure jump Lévy process, which converges to the Lévy process in the Skorokhod topology in probability, is generalised to a multivariate setting and an infinite time horizon. It is shown that it can generally be used to obtain “first jump approximations” of Lévy-driven stochastic differential equations, by establishing that it has uniformly controlled variations....
The use of GARCH models to characterize crude oil price volatility is widely observed in the empirical literature. In this paper the efficiency of six univariate GARCH models and two methods of estimation the parameters for forecasting oil price volatility are examined and the best method for forecasting crude oil price volatility of Brent market is determined. All the examined models in this p...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید