in this paper, the maximal dissipative extensions of a symmetric singular 1d discrete hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the hilbert space ℓ_{ω}²(z;c²) (z:={0,±1,±2,...}) are considered. we consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. for each of these cases we establish a self...