نتایج جستجو برای: shifted chebyshev polynomials
تعداد نتایج: 72220 فیلتر نتایج به سال:
We show that Chebyshev Polynomials are a practical representation of computable functions on the computable reals. The paper presents error estimates for common operations and demonstrates that Chebyshev Polynomial methods would be more efficient than Taylor Series methods for evaluation of transcendental functions. Keywords—Approximation Theory, Chebyshev Polynomial, Computable Functions, Comp...
A common practice for computing an elementary transcendental function nowadays has two phases: reductions of input arguments to fall into a tiny interval and polynomial approximations for the function within the interval. Typically the interval is made tiny enough so that one won’t have to go for polynomials of very high degrees for accurate approximations. Often approximating polynomials as su...
This paper presents a new technique for studying the stability properties of dynamic systems modeled by delay-differential equations (DDEs) with time-periodic parameters. By employing a shifted Chebyshev polynomial approximation in each time interval with length equal to the delay and parametric excitation period, the dynamic system can be reduced to a set of linear difference equations for the...
Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind
Riordan matrix methods and properties of generating functions are used to prove that the entries of two Catalan-type Riordan arrays are linked to the Chebyshev polynomials of the first kind. The connections are that the rows of the arrays are used to expand the monomials (1/2) (2x) and (1/2) (4x) in terms of certain Chebyshev polynomials of degree n. In addition, we find new integral representa...
This proceeding is intended to be a first introduction to spectral methods. It is written around some simple problems that are solved explicitly and in details and that aim at demonstrating the power of those methods. The mathematical foundation of the spectral approximation is first introduced, based on the Gauss quadratures. The two usual basis of Legendre and Chebyshev polynomials are then p...
We extend a collocation method for solving a nonlinear ordinary differential equation ODE via Jacobi polynomials. To date, researchers usually use Chebyshev or Legendre collocation method for solving problems in chemistry, physics, and so forth, see the works of Doha and Bhrawy 2006, Guo 2000, and Guo et al. 2002 . Choosing the optimal polynomial for solving every ODEs problem depends on many f...
On a conjecture for weighted interpolation using Chebyshev polynomials of the third and fourth kinds
A conjecture for the projection norm (or Lebesgue constant) of a weighted interpolation method based on the zeros of Chebyshev polynomials of the third and fourth kinds is resolved. This conjecture was made in a paper by J. C. Mason and G. H. Elliott in 1995. The proof of the conjecture is achieved by relating the projection norm to that of a weighted interpolation method based on zeros of Cheb...
A blind signature scheme is a cryptographic protocol to obtain a valid signature for a message from a signer such that signer’s view of the protocol can’t be linked to the resulting message signature pair. This paper presents blind signature scheme using Chebyshev polynomials. The security of the given scheme depends upon the intractability of the integer factorization problem and discrete loga...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید