Spectral properties of 1-D Schrödinger operators HX,α := − d 2 dx2 + ∑ xn∈X αnδ(x − xn) with local point interactions on a discrete set X = {xn}n=1 are well studied when d∗ := infn,k∈N |xn − xk| > 0. Our paper is devoted to the case d∗ = 0. We consider HX,α in the framework of extension theory of symmetric operators by applying the technique of boundary triplets and the corresponding Weyl funct...