نتایج جستجو برای: pso based optimization
تعداد نتایج: 3130192 فیلتر نتایج به سال:
This study proposes a multi-objective optimization model of two cascade reservoirs in the Upper Yellow River basin for increasing social well-beings in general while simultaneously mitigating ice/flood threats. We first develop a strategy of dimensionality reduction and constraint transformation to largely diminish the complexity of the optimization system and next propose a novel search method...
Particle swarm optimization (PSO) is a heuristic optimization technique based on swarm intelligence that is inspired by the behavior of bird flocking. The canonical PSO has the disadvantage of premature convergence. Several improved PSO versions do well in keeping the diversity of the particles during the searching process, but at the expense of rapid convergence. This paper proposes an example...
Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on the evolutionary ideas of natural selection and genetic. The basic concept of GAs is designed to simulate processes in natural system necessary for evolution, specifically those that follow the principles first laid down by Charles Darwin of survival of the fittest. On the other hand, Particle swarm optimization (PSO) is ...
Particle swarm optimization (PSO) has emerged as an acclaimed approach for solving complex optimization problems. The nature metaphors of flocking birds or schooling fish that originally motivated PSO have made the algorithm easy to describe but have also occluded the view of valuable strategies based on other foundations. From a complementary perspective, scatter search (SS) and path relinking...
This research presents an optimization technique for multiple routes generation using simulated niche based particle swarm optimization for dynamic online route planning, optimization of the routes and proved to be an effective technique. It effectively deals with route planning in dynamic and unknown environments cluttered with obstacles and objects. A simulated niche based particle swarm opti...
Although Particle Swarm Optimization (PSO) has demonstrated competitive performance in solving global optimization problems, it exhibits some limitations when dealing with optimization problems with high dimensionality and complex landscape. In this paper, we integrate some problem-oriented knowledge into the design of a certain PSO variant. The resulting novel PSO algorithm with an inner varia...
Swarm Intelligence algorithms have been extensively applied to solve optimization problems. However, in some domains even well-established techniques such as Particle Swarm Optimization (PSO) may not present the necessary ability to generate diversity during the process of the swarm convergence. Indeed, this is the major difficulty to use PSO to tackle dynamic problems. Many efforts to overcome...
Particle swarm optimization (PSO) has shown to be an efficient, robust and simple optimization algorithm. Most of the PSO studies are empirical, with only a few theoretical analyses that concentrate on understanding particle trajectories. This paper overviews current theoretical studies, and extend these studies to applications in mechatronic systems, such as identification, control gains and o...
There is a vivid trend in engineering optimization problems towards the adoption of heuristic optimization algorithms to arrive at optimal solutions. This is mainly due to the simplicity of these algorithms and the great cut down of complicated mathematical manipulations that are required in other optimization theory methods. This paper demonstrates the application of an iterative heuristic opt...
Applications of the Particle Swarm Optimization (PSO) to solve image processing problem with a reference to a new automatic enhancement technique based on real-coded particle swarms is proposed in this paper. The enhancement process is a non-linear optimization problem with several constraints. The objective of the proposed PSO is to maximize an objective fitness criterion in order to enhance t...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید