نتایج جستجو برای: polynomials
تعداد نتایج: 37864 فیلتر نتایج به سال:
We introduce multiple Wilson polynomials, which give a new example of multiple orthogonal polynomials (Hermite-Padé polynomials) of type II. These polynomials can be written as a Jacobi-Piñeiro transform, which is a generalization of the Jacobi transform for Wilson polynomials, found by T.H. Koornwinder. Here we need to introduce Jacobi and JacobiPiñeiro polynomials with complex parameters. Som...
We study noncommutative continuant polynomials via a new leapfrog construction. This needs the introduction of new indeterminates and leads to generalizations of Fibonacci polynomials, Lucas polynomials and other families of polynomials. We relate these polynomials to various topics such as quiver algebras and tilings. Finally, we use permanents to give a broad perspective on the subject.
The Volterra delay integral equations have numerous applications in various branches of science, including biology, ecology, physics and modeling of engineering and natural sciences. In many cases, it is difficult to obtain analytical solutions of these equations. So, numerical methods as an efficient approximation method for solving Volterra delay integral equations are of interest to many res...
In this paper, we study some properties of Whitney numbers of Dowling lattices and related polynomials. We answer the following question: there is a relation between Stirling and Eulerian polynomials. Can we find a new relation between Dowling polynomials and other polynomials generalizing Eulerian polynomials? In addition, some congruences for the Dowling numbers are given. Mathematics Subject...
Polynomials whose coefficients are successive derivatives of a class of Jacobi polynomials evaluated at x = 1 are stable. This yields a novel and short proof of the known result that the Bessel polynomials are stable polynomials. Stability preserving linear operators are discussed. The paper concludes with three open problems involving the distribution of zeros of polynomials.
In this paper, summation formulae for the 2-variable Legendre polynomials in terms of certain multi-variable special polynomials are derived. Several summation formulae for the classical Legendre polynomials are also obtained as applications. Further, Hermite-Legendre polynomials are introduced and summation formulae for these polynomials are also established.
Szegő polynomials are orthogonal with respect to an inner product on the unit circle. Numerical methods for weighted least-squares approximation by trigonometric polynomials conveniently can be derived and expressed with the aid of Szegő polynomials. This paper discusses the conditioning of several mappings involving Szegő polynomials and, thereby, sheds light on the sensitivity of some approxi...
We study a family of orthogonal polynomials which generalizes a sequence of polynomials considered by L. Carlitz. We show that they are a special case of the Sheffer polynomials and point out some interesting connections with certain Sobolev orthogonal polynomials.
We show combinatorially that the higher-order matching polynomials of several families of graphs are d-orthogonal polynomials. The matching polynomial of a graph is a generating function for coverings of a graph by disjoint edges; the higher-order matching polynomial corresponds to coverings by paths. Several families of classical orthogonal polynomials—the Chebyshev, Hermite, and Laguerre poly...
The relativistic Hermite polynomials (RHP) were introduced in 1991 by Aldaya et al. [3] in a generalization of the theory of the quantum harmonic oscillator to the relativistic context. These polynomials were later related to the more classical Gegenbauer (or more generally Jacobi) polynomials in a study by Nagel [4]. For this reason, they do not deserve any special study since their properties...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید