نتایج جستجو برای: pca و svm

تعداد نتایج: 803658  

2016
Tiene Andre Filisbino Gilson Antonio Giraldi Carlos Eduardo Thomaz

The problem of ranking features computed by principal component analysis (PCA) in N-class problems have been addressed by the multi-class discriminant principal component analysis (MDPCA) and the Fisher discriminability criterion (FDC). These methods are motivated by the fact that PCA components do not necessarily represent important discriminant directions to separate sample groups. Given a da...

2012
Yadollah Yaghoobzadeh Gholamreza Ghassem-Sani Seyed Abolghasem Mirroshandel Mahbaneh Eshaghzadeh Torbati

Recognizing TimeML events and identifying their attributes, are important tasks in natural language processing (NLP). Several NLP applications like question answering, information retrieval, summarization, and temporal information extraction need to have some knowledge about events of the input documents. Existing methods developed for this task are restricted to limited number of languages, an...

2012
Rasha Ali Hussein

In this study, Four Wave Mixing (FWM) characteristics in photonic crystal fibers are investigated. The effect of channel spacing, phase mismatching, and fiber length on FWM efficiency have been studied. The variation of idler frequency which obtained by this technique with pumping and signal wavelengths has been discussed. The effect of fiber dispersion has been taken into account; we obtain th...

2008
Amir Kabir M. Jaberi M. R. Meybodi

يمومع باي تيعقوم متسيس كي تقد 3 رد متسيس وردوخ يربوان ياه يم ريثأت يفلتخم لماوع زا زا تـسا مزلا لـيلد نيمه هب و دريذپ شور دومن هدافتسا وردوخ هدش نييعت تيعقوم رد تقد شيازفا تهج هشقن قيبطت ياه . متسيس رد هشقن قيبطت وردوـخ يربواـن ياـه دراد هدهع رب ار رهش هشقن يوررب وردوخ يلعف تيعقوم نييعت هفيظو . رد هـشقن قيبطت هلأسم لح يارب يبيكرت متيروگلا كي هلاقم نيا متسيس رد يم داهنشيپ وردوخ يربوان يا...

Journal: :Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan 1970
N Ikeda A Yada K Takase

ةصلاخلا بكرملل ةدیدج تاقتشم ریضحت ىلا ثحبلا يمری 4,3,1 ةیتلاا تلاعافتلا ءارجا للاخ نم لوزایادایاث : ًلاوأ : ب كرملل فیش ةدعاق ریضحت ) 2 و نیما 5 و تبكرم 4,3,1 لوزا یادایاث ( يلیفو یلكوینلا ضیو عتلا ءارجاو ةدعاقلل يرتسلاا ب كرملا نیو كت ى لا يدؤ یل مویدو صلا دیسكوثیا دو جوب ل ثیلاا تاتیسا ومورب عم ) 3 ( ، يذ لا یازاردیھلا عم ھتلعافم تمت ن 99 % د یازاردیھلا قتشم ریضحتل ) 4 ( فیش دعاوق نم د یدع...

2013
Faten Bellakhdhar Kais Loukil Mohamed ABID Chengliang Wang Libin Lan Yuwei Zhang

Face recognition is an important research field of pattern recognition. Up to now, it caused researchers great concern from these fields, such as pattern recognition and computer vision. In general, we can make sure that the performance of face recognition system is determined by how to extract feature vector exactly and to classify them into a class correctly. Therefore, it is necessary for us...

2013
Djamel Eddine Benrachou Brahim Boulebtateche

Driver fatigue cause each year a large number of road traffic accidents, this problem sparks the interest of research to move towards development of systems for prevention of this phenomenon. This article implements a face detection process as a preliminary step to monitor the state of drowsiness on vehicle's drivers. We propose an algorithm for pre-detection based on image processing and machi...

2014
Manisha Satone Gajanan Kharate

Biometric-based technologies include the identification based on physiological characteristics such as face, fingerprints, hand geometry, hand veins, palm, iris, retina, ear, voice and behavioral traits such as gait, signature and keystroke dynamics [1]. These biometric technologies require some voluntary action by the user. However, face recognition can be done passively without any explicit a...

Journal: :Expert Syst. Appl. 2010
Ergun Gumus Niyazi Zekiye Kiliç Ahmet Sertbas Osman N. Uçan

In this study, we present an evaluation of using various methods for face recognition. As feature extracting techniques we benefit from wavelet decomposition and Eigenfaces method which is based on Principal Component Analysis (PCA). After generating feature vectors, distance classifier and Support Vector Machines (SVMs) are used for classification step. We examined the classification accuracy ...

Journal: :Eng. Appl. of AI 2005
Shuo Li Thomas Fevens Adam Krzyzak Song Li

A general automatic method for clinical image segmentation is proposed. Tailored for the clinical environment, the proposed segmentation method consists of two stages: a learning stage and a clinical segmentation stage. During the learning stage, manually chosen representative images are segmented using a variational level set method driven by a pathologically modelled energy functional. Then a...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->