Let $\Omega$ be a bounded domain in $R^{n}$ with smooth boundary $\partial\Omega$. In this article, we will investigate the spectral properties of non-self adjoint elliptic differential operator\\ $(Au)(x)=-\sum^{n}_{i,j=1}\left(\omega^{2\alpha}(x)a_{ij}(x) \mu(x)u'_{x_{i}}(x)\right)'_{x_{j}}$, acting Hilbert space $H=L^{2}{(\Omega)}$. Dirichlet-type boundary conditions. Here...