نتایج جستجو برای: nilpotency class3

تعداد نتایج: 484  

2005
A. Kudryavtseva

We study the structure of nilpotent subsemigroups in the semigroup M(n,F) of all n × n matrices over a field, F, with respect to the operation of the usual matrix multiplication. We describe the maximal subsemigroups among the nilpotent subsemigroups of a fixed nilpotency degree and classify them up to isomorphism. We also describe isolated and completely isolated subsemigroups and conjugated e...

Journal: :J. Symb. Comput. 2008
A. S. Detinko D. L. Flannery

We develop methods for computing with matrix groups defined over a range of infinite domains, and apply those methods to the design of algorithms for nilpotent groups. In particular, we provide a practical nilpotency testing algorithm for matrix groups over an infinite field. We also provide algorithms to answer a number of structural questions for a nilpotent matrix group.The main algorithms h...

2003
DAVID EISENBUD

The classical Nullstellensatz asserts that a reduced affine variety is known by its closed points; algebraically, a prime ideal in an affine ring is the intersection of the maximal ideals containing it. A leading special case of our theorem says that any affine scheme can be distinguished from its subschemes by its closed points with a bounded index of nilpotency; algebraically, an ideal I in a...

2008
Alberto Dennunzio Pierre Guillon Benoît Masson

In this paper, we study different notions of stability of sand automata, dynamical systems inspired by sandpile models and cellular automata. First, we study the topological stability properties of equicontinuity and ultimate periodicity, proving that they are equivalent. Then, we deal with nilpotency. The classical definition for cellular automata being meaningless in that setting, we define a...

2009
TOM LADA

We look at two examples of homotopy Lie algebras (also known as L∞ algebras) in detail from two points of view. We will exhibit the algebraic point of view in which the generalized Jacobi expressions are verified by using degree arguments and combinatorics. A second approach using the nilpotency of Grassmann-odd differential operators ∆ to verify the homotopy Lie data is shown to produce the sa...

2009
TOM LADA

We look at two examples of homotopy Lie algebras (also known as L∞ algebras) in detail from two points of view. We will exhibit the algebraic point of view in which the generalized Jacobi expressions are verified by using degree arguments and combinatorics. A second approach using the nilpotency of Grassmann-odd differential operators ∆ to verify the homotopy Lie data is shown to produce the sa...

Journal: :CoRR 2007
V. Dolotin A. Morozov Sh. Shakirov

A discrete (finite-difference) analogue of differential forms is considered, defined on simplicial complexes, including triangulations of continuous manifolds. Various operations are explicitly defined on these forms, including exterior derivative and exterior product. The latter one is non-associative. Instead, as anticipated, it is a part of non-trivial A ∞ structure, involving a chain of pol...

2004
T. EVERAERT T. VAN DER LINDEN

Extending the work of Fröhlich, Lue and Furtado-Coelho, we consider the theory of Baer invariants in the context of semi-abelian categories. Several exact sequences, relative to a subfunctor of the identity functor, are obtained. We consider a notion of commutator which, in the case of abelianization, corresponds to Smith’s. The resulting notion of centrality fits into Janelidze and Kelly’s the...

2012
KEITH CONRAD

in which GiCG and Gi+1/Gi ⊂ Z(G/Gi) for all i. We call G solvable if it admits a normal series (1.1) in which Gi+1/Gi is abelian for all i. Every nilpotent group is solvable. Nilpotent groups include finite p-groups, and some theorems about p-groups extend to nilpotent groups (e.g., any nontrivial normal subgroup of a nilpotent group has a nontrivial intersection with the center). There is a la...

2004
P. A. Grassi P. van Nieuwenhuizen

We show how to gauge the set of raising and lowering generators of an arbitrary Lie algebra. We consider SU(N) as an example. The nilpotency of the BRST charge requires constraints on the ghosts associated to the raising and lowering generators. To remove these constraints we add further ghosts and we need a second BRST charge to obtain nontrivial cohomology. The second BRST operator yields a g...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید