in this paper, using a generalized dunkl translation operator, we obtain an analog of titchmarsh's theorem for the dunkl transform for functions satisfying the lipschitz-dunkl condition in $mathrm{l}_{2,alpha}=mathrm{l}_{alpha}^{2}(mathbb{r})=mathrm{l}^{2}(mathbb{r}, |x|^{2alpha+1}dx), alpha>frac{-1}{2}$.