نتایج جستجو برای: mixed roman dominating function
تعداد نتایج: 1433079 فیلتر نتایج به سال:
Identifying the type of font (e.g., Roman, Blackletter) used in historical documents can help optical character recognition (OCR) systems produce more accurate text transcriptions. Towards this end, we present an activelearning strategy that can significantly reduce the number of labeled samples needed to train a font classifier. Our approach extracts image-based features that exploit geometric...
A function f : V (G) → {+1,−1} defined on the vertices of a graph G is a signed dominating function if for any vertex v the sum of function values over its closed neighborhood is at least 1. The signed domination number γs(G) of G is the minimum weight of a signed dominating function on G. By simply changing “{+1,−1}” in the above definition to “{+1, 0,−1}”, we can define the minus dominating f...
Let G = (V,E) be a simple graph. For any real function g : V −→ R and a subset S ⊆ V , we write g(S) = ∑ v∈S g(v). A function f : V −→ [0, 1] is said to be a fractional dominating function (FDF ) of G if f(N [v]) ≥ 1 holds for every vertex v ∈ V (G). The fractional domination number γf (G) of G is defined as γf (G) = min{f(V )|f is an FDF of G }. The fractional total dominating function f is de...
A three-valued function f defined on the vertices of a graph G = (V,E), f : V , ( 1 , 0 , 1), is a minus dominating function if the sum of its function values over any closed neighborhood is at least one. That is, for every v E V, f(N[v])>~ 1, where N[v] consists of v and every vertex adjacent to v. The weight of a minus dominating function is f ( V ) = ~ f (v) , over all vertices v E V. The mi...
A set of vertices S in a graph G = (V;E) is called a dominating set of G if every vertex in the set (V n S) is adjacent to some vertex in S. For arbitrary graphs, the problem of computing smallest dominating set is NP-complete [3]. A slightly more general version of this problem is called \mixed domination" problem [1]. In this paper we present new parallel NC algorithm to nd smallest mixed dom...
We study approximation of multivariate periodic functions from Besov and Triebel–Lizorkin spaces dominating mixed smoothness by the Smolyak algorithm constructed using a special class quasi-interpolation operators Kantorovich-type. These are defined similar to classical sampling replacing samples with average values function on small intervals (or more generally sampled convolution given an app...
Let $G=(V,E)$ be a finite and simple graph of order $n$ maximumdegree $\Delta$. A signed strong total Roman dominating function ona $G$ is $f:V(G)\rightarrow\{-1, 1,2,\ldots, \lceil\frac{\Delta}{2}\rceil+1\}$ satisfying the condition that (i) forevery vertex $v$ $G$, $f(N(v))=\sum_{u\in N(v)}f(u)\geq 1$, where$N(v)$ open neighborhood (ii) every forwhich $f(v)=-1$ adjacent to at least one vertex...
Let D be a finite and simple digraph with vertex set V (D), and let f : V (D) → {−1, 1} be a two-valued function. If k ≥ 1 is an integer and ∑ x∈N−[v] f(x) ≥ k for each v ∈ V (D), where N−[v] consists of v and all vertices of D from which arcs go into v, then f is a signed k-dominating function on D. A set {f1, f2, . . . , fd} of distinct signed k-dominating functions of D with the property tha...
Let G be a graph with vertex set V (G), and let f : V (G) −→ {−1, 1} be a two-valued function. If k ≥ 1 is an integer and ∑ x∈N(v) f(x) ≥ k for each v ∈ V (G), where N(v) is the neighborhood of v, then f is a signed total k-dominating function on G. A set {f1, f2, . . . , fd} of distinct signed total k-dominating functions on G with the property that ∑d i=1 fi(x) ≤ k for each x ∈ V (G), is call...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید