نتایج جستجو برای: manifold learning
تعداد نتایج: 628464 فیلتر نتایج به سال:
Manifold learning based methods have been widely used for non-linear dimensionality reduction (NLDR). However, in many practical settings, the need to process streaming data is a challenge for such methods, owing to the high computational complexity involved. Moreover, most methods operate under the assumption that the input data is sampled from a single manifold, embedded in a high dimensional...
Manifold regularization (Belkin et al., 2006) is a geometrically motivated framework for machine learning within which several semi-supervised algorithms have been constructed. Here we try to provide some theoretical understanding of this approach. Our main result is to expose the natural structure of a class of problems on which manifold regularization methods are helpful. We show that for suc...
In many applications, the real high-dimensional data occupy only a very small part in the high dimensional ‘observation space’ whose intrinsic dimension is small. The most popular model of such data is Manifold model which assumes that the data lie on or near an unknown manifold (Data Manifold, DM) of lower dimensionality embedded in an ambient high-dimensional input space (Manifold Assumption ...
Real-world reinforcement learning problems often exhibit nonlinear, continuous-valued, noisy, partially-observable state-spaces that are prohibitively expensive to explore. The formal reinforcement learning framework, unfortunately, has not been successfully demonstrated in a real-world domain having all of these constraints. We approach this domain with a two-part solution. First, we overcome ...
Representation learning is a fundamental but challenging problem, especially when the distribution of data is unknown. We propose a new representation learning method, termed Structure Transfer Machine (STM), which enables feature learning process to converge at the representation expectation in a probabilistic way. We theoretically show that such an expected value of the representation (mean) ...
In this paper, we propose an interpretation of active learning from a pure algebraic view and combine it with semi-supervised manifold learning. The proposed active manifold learning algorithm aims to learn the lowdimensional parameter space of the manifold with high accuracy from smartly labeled samples. We demonstrate that this problem is equivalent to a condition number minimization problem ...
Semi-supervised learning is more powerful than supervised learning by using both labeled and unlabeled data. In particular, the manifold regularization framework, together with kernel methods, leads to the Laplacian SVM (LapSVM) that has demonstrated state-of-the-art performance. However, the LapSVM solution typically involves kernel expansions of all the labeled and unlabeled examples, and is ...
Kernel methods play a critical role in many dimensionality reduction algorithms. They are useful in manifold learning, classification, clustering and other machine learning tasks. Setting the kernel’s scale parameter, also referred as the kernel’s bandwidth, highly affects the extracted low-dimensional representation. We propose to set a scale parameter that is tailored to the desired applicati...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید