نتایج جستجو برای: krasnoselskii
تعداد نتایج: 185 فیلتر نتایج به سال:
In this paper, we investigate the existence of solutions for nonlinear delay Caputo q—fractional difference equations. The main result is proved by means of Krasnoselskii’s fixed point theorem. As an application, we link the conclusion of the main theorem to an existence result for Lotka—Volterra model.
Let T be a (possibly nonlinear) continuous operator on Hilbert space H. If, for some starting vector x , the orbit sequence {T k x, k = 0, 1, . . .} converges, then the limit z is a fixed point of T ; that is, T z = z. An operator N on a Hilbert space H is nonexpansive (ne) if, for each x and y in H, ‖Nx − Ny‖ ‖x − y‖. Even when N has fixed points the orbit sequence {Nk x} need not converge; co...
مسائل مقدار ویژه در بخش معدلات دیفرانسیل، خصوصا معادلات دیفرانسیل با مشتقات جزیی یکی از مهمترین و پرکاربردترین مباحث ریاضی، فیزیک و مهندسی است . اینگونه مسایل معمولا به خودی خود وجود ندارند. یعنی همانند عموم معادلات دیفراسیل به طور مستقیم تشریح کننده برخی از پارامترهای وضیعت یک سیستم نمی باشند بلکه از اینگونه معادلات ناشی می شوند. یکی از مهمترین مباحثی که معمولا در ارتباط با مسایل مقدار ویژه مط...
We use Krasnoselskii’s fixed point theorem to obtain boundedness and stability results about the zero solution of a neutral nonlinear differential equation with variable delays. A stability theorem with a necessary and sufficient condition is given. The results obtained here extend and improve the works of C. H. Jin and J. W. Luo [12] and also those of [5, 9, 15]. In the end we provide an examp...
This paper is dedicated to studying nonstationary homoclinic solutions with the least energy for a class of fractional reaction-diffusion system \begin{document}$ \begin{eqnarray*} \label{1.1} \left\{\begin{array}{lll} \partial_t u+ (-\Delta)^s u+V(x)u+W(x)v = H_v(t, x, u, v), \\ - v + v+V(x)v+W(x)u H_u(t, |u(t, x)|+|v(t, x)|\rightarrow 0, \ \text{as}\ |t|+|x|\rightarrow \infty, \end{array} \ri...
and Applied Analysis 3 involving fractional differential equations the same applies to the boundary value problems of fractional differential equations . Moreover, the Caputo derivative for a constant is zero while the Riemann-Liouville fractional derivative of a constant is nonzero. For more details, see 17 . Lemma 2.4 see 28 . For q > 0, the general solution of the fractional differential equ...
In this paper, the analysis of a schistosomiasis infection model that involves human and intermediate snail hosts as well as an additional mammalian host and a competitor snail species is studied by constructing Lyapunov functions and using a Krasnoselkii sublinearity trick. We derive the basic reproduction number R0 for the deterministic model, and establish that the global dynamics are comple...
Since Al-Salam [1] and Agarwal [2] introduced the fractional q-difference calculus, the theory of fractional q-difference calculus itself and nonlinear fractional q-difference equation boundary value problems have been extensively investigated by many researchers. For some recent developments on fractional q-difference calculus and boundary value problems of fractional q-difference equations, s...
Let $ H$ be a Hilbert space and $C$ be a closed, convex and nonempty subset of $H$. Let $T:C rightarrow H$ be a non-self and non-expansive mapping. V. Colao and G. Marino with particular choice of the sequence ${alpha_{n}}$ in Krasonselskii-Mann algorithm, ${x}_{n+1}={alpha}_{n}{x}_{n}+(1-{alpha}_{n})T({x}_{n}),$ proved both weak and strong converging results. In this paper, we generalize thei...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید