نتایج جستجو برای: kernel smoothing
تعداد نتایج: 70119 فیلتر نتایج به سال:
As improvements in cortical surface modeling allowed accurate cortical topology in brain imaging studies, surface-based methods for the analysis of functional magnetic resonance imaging (fMRI) were introduced to overcome the topological deficiency of commonly used volume-based methods. The difference between the two methods is mainly due to the smoothing techniques applied. For practical applic...
We present a new subcortical structure shape modeling framework using heat kernel smoothing constructed with the LaplaceBeltrami eigenfunctions. The cotan discretization is used to numerically obtain the eigenfunctions of the Laplace-Beltrami operator along the surface of subcortical structures of the brain. The eigenfunctions are then used to construct the heat kernel and used in smoothing out...
Most ecological data sets contain missing values, a fact which can cause problems in the analysis and limit the utility of resulting inference. However, ecological data also tend to be spatially correlated, which can aid in estimating and imputing missing values. We compared four existing methods of estimating missing values: regression, kernel smoothing, universal kriging, and multiple imputat...
Functional linear models are useful in longitudinal data analysis. They include many classical and recently proposed statistical models for longitudinal data and other functional data. Recently, smoothing spline and kernel methods have been proposed for estimating their coe cient functions nonparametrically but these methods are either intensive in computation or ine cient in performance. To ov...
Among different candidate parametric detection functions, it is suggested to use Akaike Information Criterion (AIC) to select the most appropriate one of them to fit line transect data. Four different detection functions are considered in this paper. Two of them are taken to satisfy the shoulder condition assumption and the other two estimators do not satisfy this condition. Once the appropriat...
This paper is motivated by the pioneering work of Emanuel Parzen wherein he advanced the estimation of (spectral) densities via kernel smoothing and established the role of reproducing kernel Hilbert spaces (RKHS) in field of time series analysis. Here, we consider analysis of power (ANOPOW) for replicated time series collected in an experimental design where the main goals are to estimate, and...
A simple and easy algorithm is presented for a fast calculation of kernel functions which required in fluid simulations using the Smoothed Particle Hydrodynamic (SPH) method. Present proposed algorithm improves the Linked-list algorithm and adopts the Pair-Wise Interaction technique, which are widely used for evaluating kernel functions in fluid simulations using the SPH method. The algorithm i...
Gaussian kernel smoothing has been widely used in 3D whole brain imaging analysis as a way to increase signal-to-noise ratio. Gaussian kernel is isotropic in Euclidian space. However, data obtained on the convoluted brain cortex fails to be isotropic in the Euclidean sense. On the curved surface, a straight line between two points is not the shortest distance so one may incorrectly assign less ...
A new local smoothing procedure is suggested for jump-preserving surface reconstruction from noisy data. In a neighborhood of a given point in the design space, a plane is fitted by local linear kernel smoothing, giving the conventional local linear kernel estimator of the surface at the point. The neighborhood is then divided into two parts by a line passing through the given point and perpend...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید