نتایج جستجو برای: jacobi iterativemethod
تعداد نتایج: 9584 فیلتر نتایج به سال:
Let M be a real hypersurface of a complex space form with almost contact metric structure (φ, ξ, η, g). In this paper, we study real hypersurfaces in a complex space form whose structure Jacobi operator Rξ = R(·, ξ)ξ is ξ-parallel. In particular, we prove that the condition ∇ξRξ = 0 characterizes the homogeneous real hypersurfaces of type A in a complex projective space or a complex hyperbolic ...
Harmonic maps between Riemannian manifolds are maps which extremize a certain natural energy functional; they appear in particle physics as nonlinear sigma models. Their infinitesimal deformations are called Jacobi fields. It is important to know whether the Jacobi fields along the harmonic maps between given Riemannian manifolds are integrable, i.e., arise from genuine variations through harmo...
This paper proposes the computation of the Tate pairing, Ate pairing and its variations on the special Jacobi quartic elliptic curve Y 2 = dX +Z. We improve the doubling and addition steps in Miller’s algorithm to compute the Tate pairing. We use the birational equivalence between Jacobi quartic curves and Weierstrass curves, together with a specific point representation to obtain the best resu...
Given a suitable weight on IR, there exist many (recursive) three term recurrence relations for the corresponding multivariate orthogonal polynomials. In principle, these can be obtained by calculating pseudoinverses of a sequence of matrices. Here we give an explicit recursive three term recurrence for the multivariate Jacobi polynomials on a simplex. This formula was obtained by seeking the b...
We present an efficient null space free Jacobi-Davidson method to compute the positive eigenvalues of the degenerate elliptic operator arising from Maxwell’s equations. We consider spatial compatible discretizations such as Yee’s scheme which guarantee the existence of a discrete vector potential. During the Jacobi-Davidson iteration, the correction process is applied to the vector potential in...
For a Riemannian manifold M n with the curvature tensor R, the Jacobi operator RX is defined by RX Y = R(X, Y)X. The manifold M n is called pointwise Osserman if, for every p ∈ M n , the eigenvalues of the Jacobi operator RX do not depend of a unit vector X ∈ TpM n , and is called globally Osserman if they do not depend of the point p either. R. Osserman conjectured that globally Osserman manif...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید