نتایج جستجو برای: heyting algebras regularity
تعداد نتایج: 65739 فیلتر نتایج به سال:
We study Nonassociative Lambek Calculus with additives ∧,∨, satisfying the distributive law (Distributive Full Nonassociative Lambek Calculus DFNL). We prove that categorial grammars based on DFNL, also enriched with assumptions, generate context-free languages. The proof uses proof-theoretic tools (interpolation) and a construction of a finite model, earlier employed in [11] in the proof of Fi...
We find a translation with particularly nice properties from intuitionistic propositional logic in countably many variables to intuitionistic propositional logic in two variables. In addition, the existence of a possibly-not-as-nice translation from any countable logic into intuitionistic propositional logic in two variables is shown. The nonexistence of a translation from classical logic into ...
KOSZUL ALGEBRAS, CASTELNUOVO-MUMFORD REGULARITY, AND GENERIC INITIAL IDEALS Giulio Caviglia The University of Kansas Advisor: Craig Huneke August, 2004 The central topics of this dissertation are: Koszul Algebras, bounds for the Castelnuovo Mumford regularity, and methods involving the use of generic changes of coordinates and generic hyperplane restrictions. We give an introduction to Koszul a...
In this paper we define generalised spheres in buildings using the simplicial structure and Weyl distance in the building, and we derive an explicit formula for the cardinality of these spheres. We prove a generalised notion of distance regularity in buildings, and develop a combinatorial formula for the cardinalities of intersections of generalised spheres. Motivated by the classical study of ...
We extend the notion of Heyting algebra to a notion of truth values algebra and prove that a theory is consistent if and only if it has a B-valued model for some non trivial truth values algebra B. A theory that has a B-valued model for all truth values algebras B is said to be super-consistent. We prove that super-consistency is a model-theoretic sufficient condition for strong normalization.
This paper defines a sound and complete semantic criterion, based on reducibility candidates, for strong normalization of theories expressed in minimal deduction modulo à la Curry. The use of Curry-style proof-terms allows to build this criterion on the classic notion of pre-Heyting algebras and makes that criterion concern all theories expressed in minimal deduction modulo. Compared to using C...
We present a first order formula characterizing the distributive lattices L whose Priestley spaces P(L) contain no copy of a finite forest T . For Heyting algebras L, prohibiting a finite poset T in P(L) is characterized by equations iff T is a tree. We also give a condition characterizing the distributive lattices whose Priestley spaces contain no copy of a finite forest with a single addition...
A bottom–up investigation of algebraic structures corresponding to many valued logical systems is made. Particular attention is given to the unit interval as a prototypical model of these kind of structures. At the top level of our construction, Heyting Wajsberg algebras are defined and studied. The peculiarity of this algebra is the presence of two implications as primitive operators. This cha...
In the present paper, we study fuzzy multimodal logics over complete Heyting algebras and Kripke models for these logics. We introduce two types of simulations (forward backward) five bisimulations (forward, backward, forward-backward, backward-forward regular) between models, as well corresponding presimulations prebisimulations, which are with relaxed conditions. For each type an efficient al...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید