نتایج جستجو برای: gauss lobatto legendre integration
تعداد نتایج: 235993 فیلتر نتایج به سال:
We produce exact cubic analogues of Jacobi's celebrated theta function identity and of the arithmetic-geometric mean iteration of Gauss and Legendre. The iteration in question is
An efficient algorithm for the accurate computation of Gauss–Legendre and Gauss– Jacobi quadrature nodes and weights is presented. The algorithm is based on Newton’s root-finding method with initial guesses and function evaluations computed via asymptotic formulae. The n-point quadrature rule is computed in O(n) operations to an accuracy of essentially double precision for any n ≥ 100.
This paper discusses about the solution of fuzzy Volterra integral equation of first-kind (F-VIE1) using spectral method. The parametric form of fuzzy driving term is applied for F-VIE1, then three classifications for (F-VIE1) are searched to solve them. These classifications are considered based on the interval sign of the kernel. The Gauss-Legendre points and Legendre weights for arithmetics ...
We propose and analyze the spectral collocation approximation for the partial integrodifferential equations with a weakly singular kernel. The space discretization is based on the pseudo-spectral method, which is a collocation method at the Gauss-Lobatto quadrature points. We prove unconditional stability and obtain the optimal error bounds which depend on the time step, the degree of polynomia...
We present a spectral-element discontinuous Galerkin thermal lattice Boltzmann method (SEDG-TLBM) for fluid-solid conjugate heat transfer applications. In this work, we revisit the discrete Boltzmann equation (DBE) for nearly incompressible flows and propose a numerical scheme for conjugate heat transfer applications on unstructured, non-uniform mesh distributions. We employ a double-distributi...
We propose and analyze a C spectral element method for a model eigenvalue problem with discontinuous coefficients in the one dimensional setting. A super-geometric rate of convergence is proved for the piecewise constant coefficients case and verified by numerical tests. Furthermore, the asymptotical equivalence between a Gauss-Lobatto collocation method and a spectral Galerkin method is establ...
Two methods are presented for approximating the costate of optimal control problems in integral form using orthogonal collocation at Legendre–Gauss (LG) and Legendre–Gauss–Radau (LGR) points. It is shown that the derivative of the costate of the continuous-time optimal control problem is equal to the negative of the costate of the integral form of the continuous-time optimal control problem. Us...
A mesh refinement method is described for solving a continuous-time optimal control problem using collocation at Legendre–Gauss–Radau points. The method allows for changes in both the number of mesh intervals and the degree of the approximating polynomial within a mesh interval. First, a relative error estimate is derived based on the difference between the Lagrange polynomial approximation of ...
It has recently been shown that the Lebesgue constant for Berrut’s rational interpolant at equidistant nodes grows logarithmically in the number of interpolation nodes. In this paper we show that the same holds for a very general class of well-spaced nodes and essentially any distribution of nodes that satisfy a certain regularity condition, including Chebyshev–Gauss–Lobatto nodes as well as ex...
A mesh refinement method is described for solving a continuous-time optimal control problem using collocation at Legendre-Gauss-Radau points. The method allows for changes in both the number of mesh intervals and the degree of the approximating polynomial within a mesh interval. First, a relative error estimate is derived based on the difference between the Lagrange polynomial approximation of ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید