نتایج جستجو برای: fourth kind chebyshev wavelets
تعداد نتایج: 170838 فیلتر نتایج به سال:
A simple strategy for constructing a sequence of increasingly refined interpolation grids over the triangle or the tetrahedron is discussed with the goal of achieving uniform convergence and ensuring high interpolation accuracy. The interpolation nodes are generated based on a one-dimensional master grid comprised of the zeros of the Lobatto, Legendre, Chebyshev, and second-kind Chebyshev polyn...
with given a, b, t0, t1 and n ≥ 0. This sequence was introduced by Horadam [3] in 1965, and it generalizes many sequences (see [1, 4]). Examples of such sequences are Fibonacci polynomials sequence (Fn(x))n≥0, Lucas polynomials sequence (Ln(x))n≥0, and Pell polynomials sequence (Pn(x))n≥0, when one has a = x, b = t1 = 1, t0 = 0; a = t1 = x, b = 1, t0 = 2; and a = 2x, b = t1 = 1, t0 = 0; respect...
In this paper, We use the wavelet bases of Hermite cubic splines to solve the second kind integral equations xCi) -11 K(t,s)x(s)ds = y(t), t E [0,1]. A pair of wavelets are constructed on the basis of Hermite cubic spline~: This wavelets are in C1 and supported on [0,2]. Moreover, one wavelet is symmetric, and the other is anti-symmetric. This spline wavelets are then adapted to the interval [0...
Shannon wavelets are studied together with their differential properties known as connection coefficients . It is shown that the Shannon sampling theorem can be considered in a more general approach suitable for analyzing functions ranging in multifrequency bands. This generalization coincides with the Shannon wavelet reconstruction of L2 R functions. The differential properties of Shannon wave...
Fiedler pencils are a family of strong linearizations for polynomials expressed in the monomial basis, that include the classical Frobenius companion pencils as special cases. We generalize the definition of a Fiedler pencil from monomials to a larger class of orthogonal polynomial bases. In particular, we derive Fiedler-comrade pencils for two bases that are extremely important in practical ap...
In this paper, first, a numerical method is presented for solving a class of linear Fredholm integro-differential equation. The operational matrix of derivative is obtained by introducing hybrid third kind Chebyshev polynomials and Block-pulse functions. The application of the proposed operational matrix with tau method is then utilized to transform the integro-differential equations to...
The main purpose of this paper is to propose a new numerical method for solving the optimal control problems based on state parameterization. Here, the boundary conditions and the performance index are first converted into an algebraic equation or in other words into an optimization problem. In this case, state variables will be approximated by a new hybrid technique based on new second kind Ch...
The first degenerate version of the Bernoulli polynomials of the second kind appeared in the paper by Korobov (Math Notes 2:77-19, 1996; Proceedings of the IV international conference modern problems of number theory and its applications, pp 40-49, 2001). In this paper, we study two degenerate versions of the Bernoulli polynomials of the second kind which will be called Korobov polynomials of t...
Optimal control of linear time-varying systems using the Chebyshev wavelets (a comparative approach)
In this paper, we propose the cubic semi-orthogonal compactly supported B-spline wavelets as a basis functions for the efficient solution of the second kind Fredholm integral equations system. Properties of these wavelets first presented and these properties are then used to reduce the computation of system of integral equations to some algebraic equations. The exponential convergence rate of t...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید