نتایج جستجو برای: efficient domination
تعداد نتایج: 441249 فیلتر نتایج به سال:
We study the influence of edge subdivision on the convex domination number. We show that in general an edge subdivision can arbitrarily increase and arbitrarily decrease the convex domination number. We also find some bounds for unicyclic graphs and we investigate graphs G for which the convex domination number changes after subdivision of any edge in G.
We introduce the domination search game which can be seen as a natural modiica-tion of the well-known node search game. Various results concerning the domination search number of a graph are presented. In particular, we establish a very interesting connection between domination graph searching and a relatively new graph parameter called dominating target number.
The concepts of covering and matching in fuzzy graphs using strong arcs are introduced and obtained the relationship between them analogous to Gallai’s results in graphs. The notion of paired domination in fuzzy graphs using strong arcs is also studied. The strong paired domination number γspr of complete fuzzy graph and complete bipartite fuzzy graph is determined and obtained bounds for the s...
A graph $G$ is called $P_4$-free, if $G$ does not contain an induced subgraph $P_4$. The domination polynomial of a graph $G$ of order $n$ is the polynomial $D(G,x)=sum_{i=1}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$. Every root of $D(G,x)$ is called a domination root of $G$. In this paper we state and prove formula for the domination polynomial of no...
The TAG adjunction operation operates by splitting a tree at one node, which we will call the adjunction site. In the resulting structure, the subtrees above and below the adjunction site are separated by, and connected with, the auxiliary tree used in the composition. As the adjunction site is thus split into two nodes, with a copy in each subtree, a natural way of formalizing the adjunction o...
A Roman dominating function of a graph G is a labeling f : V (G) −→ {0, 1, 2} such that every vertex with label 0 has a neighbor with label 2. The Roman domination number γR(G) of G is the minimum of ∑ v∈V (G) f(v) over such functions. The Roman domination subdivision number sdγR(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order t...
For a graph G = (V, E), a set S ⊆ V (G) is a total dominating set if it is dominating and both 〈S〉 has no isolated vertices. The cardinality of a minimum total dominating set in G is the total domination number. A set S ⊆ V (G) is a total restrained dominating set if it is total dominating and 〈V (G) − S〉 has no isolated vertices. The cardinality of a minimum total restrained dominating set in ...
Vizing’s conjecture from 1968 asserts that the domination number of the Cartesian product of two graphs is at least as large as the product of their domination numbers. In this paper we survey the approaches to this central conjecture from domination theory and give some new results along the way. For instance, several new properties of a minimal counterexample to the conjecture are obtained an...
The problem of monitoring an electric power system is placing as few measurement devices as possible. In graph theoretical representation, it can be considered as a variant of domination problem, namely, power domination problem. This problem is to find a minimum power domination set S of a graph G = (V,E) with S ⊆ V and S can dominate all vertices and edges through the observation rules accord...
A subset S of V is called a total dominating set if every vertex in V is adjacent to some vertex in S. The total domination number γt (G) of G is the minimum cardinality taken over all total dominating sets of G. A dominating set is called a connected dominating set if the induced subgraph 〈S〉 is connected. The connected domination number γc(G) of G is the minimum cardinality taken over all min...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید