نتایج جستجو برای: distance metric learning

تعداد نتایج: 886297  

Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...

2017
N. Saranya C. Usha Nandhini

1 Research Scholar, Department of Computer Science, Vellalar College for Women, Erode, Tamilnadu, India 2 Assistant Professor, Dept. of Computer Applications, Vellalar College for Women, Erode, Tamilnadu, India ---------------------------------------------------------------------***--------------------------------------------------------------------Abstract Similarity measure is closely related...

Journal: :CoRR 2015
Florian Yger Masashi Sugiyama

Metric learning has been shown to be highly effective to improve the performance of nearest neighbor classification. In this paper, we address the problem of metric learning for symmetric positive definite (SPD) matrices such as covariance matrices, which arise in many real-world applications. Naively using standard Mahalanobis metric learning methods under the Euclidean geometry for SPD matric...

2009
Mahdieh Soleymani Baghshah Saeed Bagheri Shouraki

Distance metric has an important role in many machine learning algorithms. Recently, metric learning for semi-supervised algorithms has received much attention. For semi-supervised clustering, usually a set of pairwise similarity and dissimilarity constraints is provided as supervisory information. Until now, various metric learning methods utilizing pairwise constraints have been proposed. The...

Journal: :Pattern Recognition 2013
Yang Mu Wei Ding Dacheng Tao

The ultimate goal of distance metric learning is to incorporate abundant discriminative information to keep all data samples in the same class close and those from different classes separated. Local distance metric methods can preserve discriminative information by considering the neighborhood influence. In this paper, we propose a new local discriminative distance metrics (LDDM) algorithm to l...

2009
Yin Zhang Zhi-Hua Zhou

In many applications non-metric distances are better than metric distances in reflecting the perceptual distances of human beings. Previous studies on non-metric distances mainly focused on supervised setting and did not consider the usefulness of unlabeled data. In this paper, we present probably the first study of label propagation on graphs induced from non-metric distances. The challenge he...

Journal: :IEEE Transactions on Pattern Analysis and Machine Intelligence 2019

Journal: :ACM Transactions on Multimedia Computing, Communications, and Applications 2010

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید