Let $X$ be a generic determinantal affine variety over perfect field of characteristic $p \geq 0$ and $P \subset X$ standard prime divisor generator $\mathrm{Cl}(X) \cong \mathbb{Z}$. We prove that the pair $(X,P)$ is purely $F$-regular if $p>0$ so log terminal (PLT) $p=0$ $\mathbb{Q}$-Gorenstein. In general, using recent results Z. Zhuang S. Lyu, we show PLT-type, i.e. there $\mathbb{Q}$-divis...