نتایج جستجو برای: coated magnetite nanoparticles
تعداد نتایج: 152621 فیلتر نتایج به سال:
Multifunctional composite nanoprobes consisting of iron oxide nanoparticles linked to silver and gold nanoparticles, Ag-Magnetite and Au-Magnetite, respectively, were introduced by endocytic uptake into cultured fibroblast cells. The cells containing the non-toxic nanoprobes were shown to be displaceable in an external magnetic field and can be manipulated in microfluidic channels. The distribu...
The study was based on understanding the relationship between titanium (Ti) doping amount and magnetic heating performance of magnetite (Fe3O4). Superparamagnetic nanosized Ti-doped ((Fe1?x,Tix)3O4; x = 0.02, 0.03 0.05) particles were synthesized by sol-gel technique. In addition to (Fe1?x,Tix)3O4 nanoparticles, SiO2 coated nanoparticles produced as core-shell structures understand effects sili...
Targeting cancer cells without injuring normal cells is the prime objective in treatment of cancer. In this present study, solvothermal and wet chemical precipitation techniques were employed to synthesize iron oxide (IO), hydroxyapatite (HAp), and hydroxyapatite coated iron oxide (IO-HAp) nanoparticles for magnetic hyperthermia mediated cancer therapy. The synthesized well dispersed spherical ...
Magnetite nanoparticles have size- and shape-dependent magnetic properties. In addition, assemblies of magnetite nanoparticles forming one-dimensional nanostructures have magnetic properties distinct from zero-dimensional or non-organized materials due to strong uniaxial shape anisotropy. However, assemblies of free-standing magnetic nanoparticles tend to collapse and form closed-ring structure...
The magnetite (Fe3O4) – agar nanocomposite was prepared by co-precipitation of Fe (III) and Fe (II) ions for the first time. The obtained samples were characterized by x-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. FT-IR results confirm the formation of Fe3O4 nanoparticles...
Biomedical applications of superparamagnetic iron oxide nanoparticles (SPIONs) requiring precise control over their physical and magnetic properties, and proper surface treatment. Here we report a practical and effective electrochemical strategy for preparation of the polymer coated SPIONs. In this strategy, in situ polymer coating on the surface of SPIONs was achieved through electrodeposition...
Biomedical applications of superparamagnetic iron oxide nanoparticles (SPIONs) requiring precise control over their physical and magnetic properties, and proper surface treatment. Here we report a practical and effective electrochemical strategy for preparation of the polymer coated SPIONs. In this strategy, in situ polymer coating on the surface of SPIONs was achieved through electrodeposition...
Magnetite nanoparticles of Fe(3)O(4) have been found to grow into large highly branched nanostructures including nanochains and highly branched nanotrees in the solid state through a postannealing process. By varying the preparation conditions such as annealing time and temperature, the nanostructures could be easily manipulated. Changing the starting concentration of the magnetic nanoparticle ...
background: the rapid increase in agricultural and industrial development has made heavy metal pollution a serious environmental problem and public health threat; therefore, removal of heavy metals from water is important. the current study prepared dnph@sds@fe3o4 nanoparticles as a novel and effective adsorbent for removal of hg(ii) ions from an aqueous solution. methods: a selective adsorbent...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید