نتایج جستجو برای: clustering data
تعداد نتایج: 2468872 فیلتر نتایج به سال:
Energy consumption is considered as a critical issue in wireless sensor networks (WSNs). Batteries of sensor nodes have limited power supply which in turn limits services and applications that can be supported by them. An efcient solution to improve energy consumption and even trafc in WSNs is Data Aggregation (DA) that can reduce the number of transmissions. Two main challenges for DA are: (i)...
Supervised clustering is a data mining technique that assigns a set of data to predefined classes by analyzing dataset attributes. It is considered as an important technique for information retrieval, management, and mining in information systems. Since customer satisfaction is the main goal of organizations in modern society, to meet the requirements, 137 call center of Tehran city council is ...
Imperialist Competitive Algorithm (ICA) is considered as a prime meta-heuristic algorithm to find the general optimal solution in optimization problems. This paper presents a use of ICA for automatic clustering of huge unlabeled data sets. By using proper structure for each of the chromosomes and the ICA, at run time, the suggested method (ACICA) finds the optimum number of clusters while optim...
image segmentation is an essential issue in image description and classification. currently, in many real applications, segmentation is still mainly manual or strongly supervised by a human expert, which makes it irreproducible and deteriorating. moreover, there are many uncertainties and vagueness in images, which crisp clustering and even type-1 fuzzy clustering could not handle. hence, type-...
Supervised clustering is a data mining technique that assigns a set of data to predefined classes by analyzing dataset attributes. It is considered as an important technique for information retrieval, management, and mining in information systems. Since customer satisfaction is the main goal of organizations in modern society, to meet the requirements, 137 call center of Tehran city council is ...
Abstract. Unsupervised identification of groups in large data sets is important for many machine learning and knowledge discovery applications. Conventional clustering approaches (kmeans, hierarchical clustering, etc.) typically do not scale well for very large data sets. In recent years, data stream clustering algorithms have been proposed which can deal efficiently with potentially unbounded ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید