نتایج جستجو برای: chebyshev gauss lobatto points
تعداد نتایج: 279438 فیلتر نتایج به سال:
In this paper, Chebyshev acceleration technique is used to solve the fuzzy linear system (FLS). This method is discussed in details and followed by summary of some other acceleration techniques. Moreover, we show that in some situations that the methods such as Jacobi, Gauss-Sidel, SOR and conjugate gradient is divergent, our proposed method is applicable and the acquired results are illustrate...
Gauss-Seidel method is often the smoother of choice within multigrid applications. In the context of unstructured meshes, however, maintaining good parallel efficiency is difficult with multiplicative iterative methods such as Gauss-Seidel. This leads us to consider alternative smoothers. We discuss the computational advantages of polynomial smoothers within parallel multigrid algorithms for po...
We provide an algorithm to compute the nodes and weights for Gauss-Chebyshev quadrature formulas integrating exactly in spaces of rational functions with arbitrary real poles outside [−1, 1]. Contrary to existing rational quadrature formulas, the computational effort is very low, even for extremely high degrees, and under certain conditions on the poles it can be shown that the complexity is of...
The goal of this paper is to derive Hermite–Hadamard–Fejér-type inequalities for higher-order convex functions and a general three-point integral formula involving harmonic sequences polynomials w-harmonic functions. In special cases, estimates are derived various classical quadrature formulae such as the Gauss–Legendre Gauss–Chebyshev first second kind.
In this paper, we present a discretization of the time-dependent Schrödinger equation based on a Magnus–Lanczos time integrator and high-order Gauss– Lobatto finite elements in space. A truncated Galerkin orthogonality is used to obtain duality-based a posteriori error estimates that address the temporal and the spatial error separately. Based on this theory, a space-time adaptive solver for th...
In this paper, we consider numerical differentiation of bivariate functions when a set of noisy data is given. A mollification method based on spanned by Legendre polynomials is proposed and the mollification parameter is chosen by a discrepancy principle. The theoretical analyses show that the smoother the genuine solution, the higher the convergence rates of the numerical solution. To get a p...
This work considers the discontinuous Galerkin (DG) finite element discretization of first-order systems of conservation laws derivable as moments of the kinetic Boltzmann equation with Levermore (1996) closure. Using standard energy analysis techniques, a new class of energy stable numerical flux functions are devised for the DG discretization of Boltzmann moment systems. Simplified energy sta...
Solving the wave equation by a C o finite element method requires to mass-lump the term in time of the variational f6rmulation in order to avoid the inversion of a n-diagonal symmetric matrix at each time-step of the algorithm. One can easily get this mass-lumping on quadrilateral meshes by using a h-version of the spectral elements, based on Gauss-Lobatto quadrature formulae but the equivalent...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید