نتایج جستجو برای: chebyshev center

تعداد نتایج: 287368  

2007
P. B. BORWEIN

The multivariate integer Chebyshev problem is to find polynomials with integer coefficients that minimize the supremum norm over a compact set in C. We study this problem on general sets, but devote special attention to product sets such as cube and polydisk. We also establish a multivariate analog of the Hilbert-Fekete upper bound for the integer Chebyshev constant, which depends on the dimens...

Journal: :J. Comput. Physics 2016
Andreas Pieper Moritz Kreutzer Martin Galgon Andreas Alvermann Holger Fehske Georg Hager Bruno Lang Gerhard Wellein

We study Chebyshev filter diagonalization as a tool for the computation of many interior eigenvalues of very large sparse symmetric matrices. In this technique the subspace projection onto the target space of wanted eigenvectors is approximated with high-order filter polynomials obtained from a regularized Chebyshev expansion of a window function. After a short discussion of the conceptual foun...

Journal: :Optimization Letters 2007
Jonathan M. Borwein

This paper is a companion to a lecture given at the Prague Spring School in Analysis in April 2006. It highlights four distinct variational methods of proving that a finite dimensional Chebyshev set is convex and hopes to inspire renewed work on the open question of whether every Chebyshev set in Hilbert space is convex.

2013
M. M. Hosseini

In this paper, an Adomian decomposition method using Chebyshev orthogonal polynomials is proposed to solve a well-known class of weakly singular Volterra integral equations. Comparison with the collocation method using polynomial spline approximation with Legendre Radau points reveals that the Adomian decomposition method using Chebyshev orthogonal polynomials is of high accuracy and reduces th...

2014
M. Ghasemi

In this paper, we propose the Chebyshev wavelet approximation for the numerical solution of a class of integrodifferential equation which describes the charged particle motion for certain configurations of oscillating magnetic fields. We show that the Chebyshev approximation transform an integral equation to an explicit system of linear algebraic equations. Illustrative examples are included to...

Journal: :Numerische Mathematik 2010
Shuhuang Xiang Xiaojun Chen Haiyong Wang

This paper improves error bounds for Gauss, Clenshaw-Curtis and Fejér’s first quadrature by using new error estimates for polynomial interpolation in Chebyshev points. We also derive convergence rates of Chebyshev interpolation polynomials of the first and second kind for numerical evaluation of highly oscillatory integrals. Preliminary numerical results show that the improved error bounds are ...

Journal: :SIAM J. Scientific Computing 1998
Leland Jameson

Differencing operators of arbitrarily high order can be constructed by interpolating a polynomial through a set of data followed by differentiation of this polynomial and finally evaluation of the polynomial at the point where a derivative approximation is desired. Furthermore, the interpolating polynomial can be constructed from algebraic, trigonometric, or, perhaps exponential polynomials. Th...

2018
Claudio Qureshi Daniel Panario

We completely describe the functional graph associated to iterations of Chebyshev polynomials over finite fields. Then, we use our structural results to obtain estimates for the average rho length, average number of connected components and the expected value for the period and preperiod of iterating Chebyshev polynomials.

Journal: :Mathematics and Computers in Simulation 2009
Jan Ole Skogestad Henrik Kalisch

Solutions of a boundary value problem for the Korteweg–de Vries equation are approximated numerically using a finite-difference method, and a collocation method based on Chebyshev polynomials. The performance of the two methods is compared using exact solutions that are exponentially small at the boundaries. The Chebyshev method is found to be more efficient. © 2009 IMACS. Published by Elsevier...

2013
Paul Barry

The Chebyshev-Boubaker polynomials are the orthogonal polynomials whose coefficient arrays are defined by ordinary Riordan arrays. Examples include the Chebyshev polynomials of the second kind and the Boubaker polynomials. We study the connection coefficients of this class of orthogonal polynomials, indicating how Riordan array techniques can lead to closed-form expressions for these connection...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید