In this article, we consider the following two-point discrete fractional boundary value problem with constant coefficient associated Dirichlet conditions. \begin{equation*} \begin{cases} -\big{(}\nabla^{\nu}_{\rho(a)}u\big{)}(t) + \lambda u(t) = f(t, u(t)), \quad t \in \mathbb{N}^{b}_{a 2}, \\ u(a) u(b) 0, \end{cases} \end{equation*} where $1 < \nu 2$, $a,b \mathbb{R}$ $b-a\in\mathbb{N}_{3}$...