نتایج جستجو برای: bimetallic metal organic frameworks
تعداد نتایج: 419780 فیلتر نتایج به سال:
Efforts to utilize metal-organic frameworks, a new class of materials exhibiting high surface areas, tunable pore dimensions, and adjustable surface functionality, for CO2 capture will be presented. Open metal coordination sites on the framework surface can deliver a high CO2 loading capacity at low pressures. However, additional criteria such as water stability and the selective binding of CO2...
The high porosity of metal-organic frameworks (MOFs) has been used to achieve exceptional gas adsorptive properties but as yet remains largely unexplored for electrochemical energy storage devices. This study shows that MOFs made as nanocrystals (nMOFs) can be doped with graphene and successfully incorporated into devices to function as supercapacitors. A series of 23 different nMOFs with multi...
We report the synthesis, structure and physicochemical attributes of a new holmium(III)-based metal-organic framework whose 3D network structure gives rise to porosity; the reported structure-type can be varied using a range of different lanthanide ions to tune the photophysical properties and produce ligand-sensitised near-infrared (NIR) and visible light emitters.
Proteins are no longer just ingredients for biologists: Proteinaceous materials are gradually stepping into the spotlight as highly functional next generation materials, despite the fact that “material science” has previously mainly been explored by chemists. In the September 16th issue of Journal of American Chemical Society, Tezcan and co-workers report an interesting methodology to prepare a...
Self-assembly has proven to be a widely successful synthetic strategy for functional materials, especially for metal-organic materials (MOMs), an emerging class of porous materials consisting of metal-organic frameworks (MOFs) and metal-organic polyhedra (MOPs). However, there are areas in MOM synthesis in which such self-assembly has not been fully utilized, such as controlling the interior of...
We have witnessed a rapid growth in the field of a new nanoporous material group, metal organic frameworks (MOFs), over the past decade. MOFs possess a wide array of potential applications in chemical engineering, chemistry, and materials science, including gas storage, gas separation, and catalysis. One of the areas MOFs started to appear recently is biomedical applications. The unique physica...
Metal-organic frameworks (MOFs), being a family of highly crystalline and porous materials, have attracted particular attention in material science due to their unprecedented chemical structural tunability. Next application gas adsorption, separation, storage, MOFs also can be utilized for energy transfer storage batteries supercapacitors. Based on recent studies, this review describes the late...
Transition metal-exchanged polymer resin beads have been used as a heterogeneous controlled-release source of metal cations in high yielding, phase pure solvothermal syntheses of novel transition metal-organic frameworks.
Three isostructural interwoven 3,4-connected mesoporous metal-organic frameworks of pto-a topology (UTSA-28-Cu, UTSA-28-Zn, and UTSA-28-Mn) were synthesized and structurally characterized. Because of their metastable nature, their gas sorption properties are highly dependent on the metal ions and activation profiles. The most stable, UTSA-28a-Cu, exhibits promising gas storage and separation ca...
Metal-organic frameworks (MOFs) are constructed by linking inorganic units with organic linkers to make extended networks. Though more than 20 000 MOF structures have been reported most of these are ordered and largely composed of a limited number of different kinds building units, and very few have multiple different building units (heterogeneous). Although heterogeneity and multiplicity is a ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید