نتایج جستجو برای: artifcial neural networks

تعداد نتایج: 636052  

Journal: :The Leading Edge 2018

Ahmad Ghanbari Sayyed Mohammad Reza Sayyed Noorani Yasaman Vaghei,

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

Background & Aim: A main problem in diabetes is its timely and accurate diagnosis. This study aimed at diagnosing diabetes using data mining methods. Methods: The present study is an analytical investigation including 768 individuals with 8 attributes. Artificial neural networks and fuzzy neural networks were used to diagnose the diabetes. To achieve a real accuracy, the Kfold method was used ...

ژورنال: مهندسی دریا 2005
شفیعی فر, مهدی, مقیم, محمد نوید,

One of the most important issues in designing coastal and offshore structures is the prediction of wave and current forces on slender cylinders. Such forces are often considered as dominate loadings. Many analytical and empirical methods such as Morison equation have been suggested for estimation of waves and current forces. Such methods, however, have shown inaccuracies in predicting hydrodyna...

, ,

Common methods to determine the soil infiltration need extensive time and are expensive. However, the existence of non-linear behaviors in soil infiltration makes it difficult to be modeled. With regards to the difficulties of direct measurement of soil infiltration, the use of indirect methods toestimate this parameter has received attention in recent years. Despite the existence of various th...

Journal: :Proceedings of the Institute of State and Law of the RAS 2020

Gary R. Weckman Harry S. Whiting Helmut W. Paschold John D. Dowler William A. Young

Neural networks were used to estimate the cost of jet engine components, specifically shafts and cases. The neural network process was compared with results produced by the current conventional cost estimation software and linear regression methods. Due to the complex nature of the parts and the limited amount of information available, data expansion techniques such as doubling-data and data-cr...

Nouredin Parandin Somayeh Ezadi

In this paper, we introduce a hybrid approach based on neural network and optimization teqnique to solve ordinary differential equation. In proposed model we use heyperbolic secont transformation function in hiden layer of neural network part and bfgs teqnique in optimization part. In comparison with existing similar neural networks proposed model provides solutions with high accuracy. Numerica...

F. Bayat Babolghani K. Parand Z. Roozbahani,

In this paper we propose a method for solving some well-known classes of Lane-Emden type equations which are nonlinear ordinary differential equations on the semi-innite domain. The proposed approach is based on an Unsupervised Combined Articial Neural Networks (UCANN) method. Firstly, The trial solutions of the differential equations are written in the form of feed-forward neural networks cont...

Ahmad Ghanbari Sayyed Mohammad Reza Sayyed Noorani Yasaman Vaghei,

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید