نتایج جستجو برای: annihilator graph

تعداد نتایج: 198304  

Let $R$ be a ring, $sigma$ be an endomorphism of $R$ and $M_R$ be a $sigma$-rigid module. A module $M_R$ is called quasi-Baer if the right annihilator of a principal submodule of $R$ is generated by an idempotent. It is shown that an $R$-module $M_R$ is a quasi-Baer module if and only if $M[[x]]$ is a quasi-Baer module over the skew power series ring $R[[x,sigma]]$.

Journal: :Journal of Mathematical Sciences 2022

In this paper, we obtain a classification of quasigroup rings by the quantity elements with null left annihilator for different quasigroups. This becomes possible due to criterion being an element in ring. By virtue criterion, make calculation find regularities using various fields and quasigroups order 4. outcome helps us two results where any have same number ring GF(p)Q fixed Q has GF(pn)Q.

Journal: :Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2019

Journal: :Rendiconti del Seminario Matematico della Università di Padova 2016

Journal: :Monthly Notices of the Royal Astronomical Society 1992

2014
V. De Filippis G. Scudo L. Sorrenti

Let R be a prime ring of characteristic different from 2, with extended centroid C, U its two-sided Utumi quotient ring, F a nonzero generalized derivation of R, f(x 1,…, x n ) a noncentral multilinear polynomial over C in n noncommuting variables, and a, b ∈ R such that a[F(f(r 1,…, r n )), f(r 1,…, r n )]b = 0 for any r 1,…, r n ∈ R. Then one of the following holds: (1) a = 0; (2) b = 0; (3) ...

2002
Oleksandr Khomenko Volodymyr Mazorchuk

We study the structure of generalized Verma modules over a semi-simple complex finite-dimensional Lie algebra, which are induced from simple modules over a parabolic subalgebra. We consider the case when the annihilator of the starting simple module is a minimal primitive ideal if we restrict this module to the Levi factor of the parabolic subalgebra. We show that these modules correspond to pr...

Journal: :Proceedings of the London Mathematical Society 1888

2009

If N is a submodule of the R-module M , and a ∈ R, let λa : M/N → M/N be multiplication by a. We say that N is a primary submodule of M if N is proper and for every a, λa is either injective or nilpotent. Injectivity means that for all x ∈ M , we have ax ∈ N ⇒ x ∈ N . Nilpotence means that for some positive integer n, aM ⊆ N , that is, a belongs to the annihilator of M/N , denoted by ann(M/N). ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید