نتایج جستجو برای: algebraic dual
تعداد نتایج: 211314 فیلتر نتایج به سال:
We consider the linear monotone complementarity problem for domains obtained as the intersection of an aane subspace and the Cartesian product of symmetric cones. A primal-dual potential reduction algorithm is described and its complexity estimates are established with the help of the Jordan-algebraic technique .
We give a short review of Frobenius manifolds and algebraic integrability and study their intersection. The simplest case is the relation between the Frobenius manifold of simple singularities, which is almost dual to the integrable open Toda chain. New types of manifolds called extra special Kähler and special F -manifolds are introduced which capture the intersection.
This paper describes the algorithm for construction of the ‘naturally’ multi-dimensional pseudorandom point generator based on the theory of canonical number systems in multidimensional algebraic structures. Applications of the generator to the tasks of computer graphics are considered. The method for using dual LFSR-CNS generators for scrambling existing point sets is described. Numerical resu...
We formulate and prove a generalization of Zariski-van Kampen theorem on the topological fundamental groups of smooth complex algebraic varieties. As an application, we prove a hyperplane section theorem of Lefschetz-Zariski-van Kampen type for the fundamental groups of the complements to the Grassmannian dual varieties.
Using methods from algebraic topology and group cohomology, I pursue Grothendieck’s question on equality of geometric and cohomological Brauer groups in the context of complex-analytic spaces. The main result is that equality holds under suitable assumptions on the fundamental group and the Pontrjagin dual of the second homotopy group. I apply this to Lie groups, Hopf manifolds, and complex-ana...
We introduce common generalization of (double) Schubert, Grothendieck, Demazure, dual and stable Grothendieck polynomials, and Di Francesco–Zinn-Justin polynomials. Our approach is based on the study of algebraic and combinatorial properties of the reduced rectangular plactic algebra and associated Cauchy kernels.
Robertson and Seymour conjectured that the treewidth of a planar graph and the treewidth of its geometric dual differ by at most one. Lapoire solved the conjecture in the affirmative, using algebraic techniques. We give here a much shorter proof of this result.
We provide a general, unified, framework for external zonotopal algebra. The approach is critically based on employing simultaneously the two dual algebraic constructs and invokes the underlying matroidal and geometric structures in an essential way. This general theory makes zonotopal algebra an applicable tool for a larger class of polytopes.
In this paper we obtain several tight bounds on different types of alliance numbers of a graph, namely (global) defensive alliance number, global offensive alliance number and global dual alliance number. In particular, we investigate the relationship between the alliance numbers of a graph and its algebraic connectivity, its spectral radius, and its Laplacian spectral radius.
Let Γ be the mapping class group of an oriented surface Σ of genus g with r boundary components. We prove that the first cohomology group H(Γ,O(MSL2(C)) ∗) is non-trivial, where the coefficient module is the dual of the space of algebraic functions on the SL2(C) moduli space over Σ.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید