نتایج جستجو برای: نزدیک ترین همسایه knn

تعداد نتایج: 94222  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده برق و کامپیوتر 1394

با توجه به افزایش روزافزون داده¬های ویدیویی، تحقیقات فراوانی در زمینه بازیابی و دسته بندی این نوع داده¬ها صورت گرفته است. طبقه¬بندی ویدیوهای ورزشی با استفاده از تجزیه و تحلیل های ویدیو می¬تواند در نمایه¬سازی و بازیابی ویدیو مفید باشد. در این رساله، طبقه بندی ویدیوهای ورزشی با استفاده از ترکیب ویژگی¬های استاتیک مانند رنگ و ویژگی¬های دینامیک مانند حرکت انجام گرفته است. روش ارائه شده با استفاده از...

2002
Maleq Khan Qin Ding William Perrizo

Classification of spatial data has become important due to the fact that there are huge volumes of spatial data now available holding a wealth of valuable information. In this paper we consider the classification of spatial data streams, where the training dataset changes often. New training data arrive continuously and are added to the training set. For these types of data streams, building a ...

2014
C. F. ZHOU L. MA

With the recent development in mobile computing devices and as the ubiquitous deployment of access points(APs) of Wireless Local Area Networks(WLANs), WLAN based indoor localization systems(WILSs) are of mounting concentration and are becoming more and more prevalent for they do not require additional infrastructure. As to the localization methods in WILSs, for the approaches used to localizati...

2017
Pooja Rani Jyoti Vashishtha S. Sethi D. Malhotra Liangxiao Jiang Harry Zhang D. P. Vivencio E. R. Hruschka M. do Carmo Nicoletti E. B. dos Santos

K-Nearest Neighbor (KNN) is highly efficient classification algorithm due to its key features like: very easy to use, requires low training time, robust to noisy training data, easy to implement. However, it also has some shortcomings like high computational complexity, large memory requirement for large training datasets, curse of dimensionality and equal weights given to all attributes. Many ...

2007
Muhammad Aamir Cheema Yidong Yuan Xuemin Lin

Continuously monitoring kNN queries in a highly dynamic environment has become a necessity to many recent location-based applications. In this paper, we study the problem of continuous kNN query on the dataset with an in-memory grid index. We first present a novel data access method – CircularTrip. Then, an efficient CircularTrip-based continuous kNN algorithm is developed. Compared with the ex...

2003
Abhishek Ranjan

Several machine learning algorithms have been applied to the problem of static hand posture recognition. K-nearesr neighbor (KNN) performs very well in flexible posture recognition, but speed and memory requirements of the algorithm make it difficult to use in real time applications. In this paper we propose an approach to speed up the KNN without changing its behavior. We use the mixture of ga...

2013
E. James Harner Shengqiao Li Donald A. Adjeroh

Random KNN (RKNN) is a novel generalization of traditional nearest-neighbor modeling. Random KNN consists of an ensemble of base k-nearest neighbor models, each constructed from a random subset of the input variables. A collection of r such base classifiers is combined to build the final Random KNN classifier. Since the base classifiers can be computed independently of one another, the overall ...

ژورنال: :پژوهش فیزیک ایران 0
فرزانه کشاورز f keshavarz department of physics, faculty of sciences, university of shahrekord, shahrekord, iranگروه فیزیک، دانشکده علوم پایه، دانشگاه شهرکرد، شهرکرد حمید مصدق h mosadeq department of physics, faculty of sciences, university of shahrekord, shahrekord, iranگروه فیزیک، دانشکده علوم پایه، دانشگاه شهرکرد، شهرکرد

در این تحقیق اثر برهم کنش های چهار اسپینی بین اسپین های همسایه اول و دوم شبکه لانه زنبوری بر روی سیمای فاز مدل هایزنبرگ پادفرومغناطیس اسپین با برهم کنش های دو اسپنی بین همسایه های اول و دوم مورد مطالعه قرار گرفته است برای نزدیک کردن مدل اسپینی مؤثر برای شبکه لانه زنبوری به مدل هابارد باید علاوه بر برهم کنش های دو اسپینی برهم کنش های چند اسپنی را نیز در نظر بگیریم. در این تحقیق اثر برهم کنش های ...

2007
Robert M. Bell Yehuda Koren

Our final solution (RMSE=0.8712) consists of blending 107 individual results. Since many of these results are close variants, we first describe the main approaches behind them. Then, we will move to describing each individual result. The core components of the solution are published in our ICDM'2007 paper [1] (or, KDD-Cup'2007 paper [2]), and also in the earlier KDD'2007 paper [3]. We assume th...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید