نتایج جستجو برای: متریک ناوردا
تعداد نتایج: 1066 فیلتر نتایج به سال:
0
سابقه و هدف: خشکسالی به عنوان پیچیدهترین و خطرناکترین بلایای طبیعی است که هم در مکان و هم طی زمان تغییر میکند. گرمایش جهانی در سالهای اخیر باعث تشدید این گونه رویدادهای حدی شده است. از این رو استفاده از شاخصهای خشکسالی که هر دو اثر بارش و دما را در نظر میگیرند و نیز استفاده از روشهای توأم فضایی- زمانی که گسترش یافتهی آمار مکانی هستند، احتمالاً میتواند باعث پایش بهتر خشکسالیها و در نتی...
یکی از حل هایِ دقیقی که برای معادلاتِ اینشتین در دنیای تهی نوشته شده، حل پاددوسیته است. می توان رویه های پاددوسیته با ابعاد مختلفی تعریف کرد؛ آن چه به تحقیقاتِ ما مربوط است رویه ی پاددوسیته با دو بعد فضایی و یک بعد زمانی است. در ضمنِ مرورِ برخی کارهای قبلی، رسم الخطی را توسعه می دهیم و که بسیار به «کِت و برا»ی دیراک شبیه است و در آن مختصاتِ فضازمان so(2,2) به صورتِ یک کِت ارائه می شود. سپس بردارهای کیل...
چکیده قضیه نقطه ثابت باناخ که به اصل انقباض باناخ نیز مشهور است ، یکی از قضایای اصلی در نظریه نقطه ثابت است . بعد از مقال? باناخ ، ریاضی دانان تلاش هایی برای تعمیم این قضیه انجام دادند . برای مثال در سال 197? ، چیریچ [7] ، نگاشت های شبه انقباضی را معرفی و قضیه وجود و یکتایی نقطه ثابت برای این نگاشت ها را اثبات کرد . موضوع تعمیم قضیه نقطه ثابت باناخ برای نگاشت های چند مقداری ( که به آ...
هدف این بود که مقاله حاضر گزارشی باشد از مکان مندی وجودی برمبنای قیاسی با روش هایدگر در مواجهه با مسائل زمانمندی وجدآور. این مقاله ابتدا موقعیت پیوند «مکان مندی وجودی و مکان صوری» را تعیین می کند. سپس به نقش انواع مختلف مکان مندی در تحلیل وجودی می پردازد. بی تردید شباهتهایی با پدیده شناسی تجربه بدنی مرلوپونتی وجود دارد. سرانجام گسترۀ مکان مندی وجودی توصیف می شود.
مفهوم مجموعه مرتب خطی مقدار، تابع صعودی اکید، شبه متریک، مزدوج یک شبه متریک و کامل دوسویی را تعریف کرده و نشان می دهیم توابع صعودی اکید شبه متریک ایجاد می کنند. همچنین مفهوم مجموعه مرتب خطی مقدار (x,?) را تعریف نموده و ثابت می کنیم ? از x,d_?) ) به توی فضای شبه متریک (r^+,u)یک ایزومتری می باشد. در ادامه مفهوم کامل بودن مجموعه مرتب خطی مقدار را بیان کرده و نشان می دهیم کامل شده هر مجموعه مرتب خط...
در این پایان نامه قضایای مینیمم سازی و قضایای نقطه ثابت را در فضاهای مولد خانواده ی شبه متریک و فضاهای متریک فازی اثبات می کنیم.
در این پایان نامه مفهوم فضاهای متریک مخروطی معرفی و نتایجی را درباره قضایای نقاط ثابت و نقاط ثابت مشترک توابع انقباضی ارائه داده و ویژگی km را به فضاهای متریک مخروطی تعمیم داده و چند قضیه نقطه ثابت را در این خصوص ارائه می دهیم. همچنین فاصله بین دو مجموعه را در فضای متریک مخروطی منظم تعریف و نتایجی را در مورد بهترین تقریب در این فضاها بدست می آوریم. بعلاوه نقطه ثابت چندتابعی های انقباضی را بررسی...
دراین پایان نامه، ابتدا اصل kkm را مورد مطالعه قرار داده و پس از معرفی صورتهای مختلف اصل kkm به کاربرد این اصل در نظریه نقطه ثابت خواهیم برداخت. سپس با معرفی فضاهای متریک ابرمحدب و ویژگی های منحصربفرد این فضاها و همچنین ارتباط فضاهای ابرمحدب باسایر فضاهای متریک، قضایای kkm و کی فن در فضاهای متریک ابرمحدب را مورد مطالعه قرارداده ایم. در انتها نیز چند مساله غیرخطی درفضاهای ابرمحدب را آورده ایم.
در ابتدا به بررسی جبرهای نسبت بر روی عملگرهای وارون پذیر روی فضاهای هیلبرت می پردازیم و توسیعی ارایه خواهیم داد که این جبرها را روی فضاهای باناخ تعریف می کند وخواص آنها را بررسی خواهیم کرد. در فصل بعد جبری را معرفی می کنیم که به ازای هر عملگر روی فضای هیلبرت با بعد نامتناهی تعریف خواهد شد که آن را جبر طیفی می نامیم. نشان می دهیم که این جبر شامل جابجاگرهای آن عملگر است و در بسیاری از حالات این ش...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید