نتایج جستجو برای: روش k means
تعداد نتایج: 1068359 فیلتر نتایج به سال:
The k-means clustering algorithm is one of the most widely used, effective, and best understood clustering methods. However, successful use of k-means requires a carefully chosen distance measure that reflects the properties of the clustering task. Since designing this distance measure by hand is often difficult, we provide methods for training k-means using supervised data. Given training data...
در این پایان نامه ما قصد داریم با به کارگیری شکل منظومه سیگنال دریافتی به عنوان ویژگی، به تشخیص نوع مدولاسیون های دیجیتال خطی در یک شبکه رادیوشناختی بپردازیم. رویکرد ما استفاده از خوشه بندی سیمبل های باند پایه سیگنال و ارزیابی نتایج خوشه بندی توسط معیارهای تأیید صحت خوشه بندی برای بازشناسی نوع منظومه سیگنال می باشد. به همین منظور تعدادی از معروف ترین الگوریتم های خوشه بندی و معیارهای ارزیابی خو...
Due to its simplicity and versatility, k-means remains popular since it was proposed three decades ago. Since then, continuous efforts have been taken to enhance its performance. Unfortunately, a good trade-off between quality and efficiency is hardly reached. In this paper, a novel k-means variant is presented. Different from most of k-means variants, the clustering procedure is explicitly dri...
K-means is a popular non-hierarchical method for clustering large datasets. The time requirements increase linearly with the size of the data set which make it particulary suited for extremely large datasets such as those found in digital libraries. The method was developed by MacQueen [4] in 1967. In our project we take a uniprocessor k-means algorithm and implement a parallel k-means algorith...
In many applications it is desirable to cluster high dimensional data along various subspaces, which we refer to as projective clustering. We propose a new objective function for projective clustering, taking into account the inherent trade-off between the dimension of a subspace and the induced clustering error. We then present an extension of the -means clustering algorithm for projective clu...
this paper compares clusters of aligned persian and english texts obtained from k-means method. text clustering has many applications in various fields of natural language processing. so far, much english documents clustering research has been accomplished. now this question arises, are the results of them extendable to other languages? since the goal of document clustering is grouping of docum...
When clustering a dataset, the right number k of clusters to use is often not obvious, and choosing k automatically is a hard algorithmic problem. In this paper we present an improved algorithm for learning k while clustering. The G-means algorithm is based on a statistical test for the hypothesis that a subset of data follows a Gaussian distribution. G-means runs k-means with increasing k in a...
The K-means algorithm is a popular data-clustering algorithm. However, one of its drawbacks is the requirement for the number of clusters, K, to be specified before the algorithm is applied. This paper first reviews existing methods for selecting the number of clusters for the algorithm. Factors that affect this selection are then discussed and a new measure to assist the selection is proposed....
Clustering of objects is an important area of research and application in variety of fields. In this paper we present a good technique for data clustering and application of this Technique for data clustering in a closed area. We compare this method with K-nearest neighbor and K-means.
سیب زمینی یکی از محصولات مهم زراعی و استراتژیک ایران است که می تواند به یکی از محصولات صادراتی ایران تبدیل شود. درجه بندی اتوماتیک یکی از مهم ترین اقدامات در جهت بالا بردن کیفیت این محصولات است که تاثیری مستقیم بر بازار پسندی این محصول و رضایت مشتری دارد. در درجه بندی سیب زمینی بر اساس استاندارد آمریکایی پارامترهای زیادی دخالت دارندکه مهم ترین آنها درصد بیماری های سطحی است که درجه محصول را مشخص...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید