نتایج جستجو برای: خوشهبندیk means
تعداد نتایج: 350089 فیلتر نتایج به سال:
We propose a novel accelerated exact k-means algorithm, which performs better than the current state-of-the-art low-dimensional algorithm in 18 of 22 experiments, running up to 3× faster. We also propose a general improvement of existing state-of-the-art accelerated exact k-means algorithms through better estimates of the distance bounds used to reduce the number of distance calculations, and g...
We present the global k-means algorithm which is an incremental approach to clustering that dynamically adds one cluster center at a time through a deterministic global search procedure consisting of N (with N being the size of the data set) executions of the k-means algorithm from suitable initial positions. We also propose modifications of the method to reduce the computational load without s...
Suppose k centers are fit to m points by heuristically minimizing the k-means cost; what is the corresponding fit over the source distribution? This question is resolved here for distributions with p ≥ 4 bounded moments; in particular, the difference between the sample cost and distribution cost decays with m and p as mmin{−1/4,−1/2+2/p}. The essential technical contribution is a mechanism to u...
Cardiac fibre architecture plays a key role in heart function. Recently, the estimation of fibre structure has been simplified with diffusion tensor MRI (DT-MRI). In order to assess the heart architecture and its underlying function, with the goal of dealing with pathological tissues and easing inter-patient comparisons, we propose a methodology for finding cardiac myofibrille trace corresponde...
Finding discords in time series database is an important problem in the last decade due to its variety of real-world applications, including data cleansing, fault diagnostics, and financial data analysis. The best known approach to our knowledge is HOT SAX technique based on the equiprobable distribution of SAX representations of time series. This characteristic, however, is not preserved in th...
Medoid clustering frequently gives better results than those of the K-means clustering in the sense that a unique object is the representative element of a cluster. Moreover the method of medoids can be applied to nonmetric cases such as weighted graphs that arise in analyzing SNS(Social Networking Service) networks. A general problem in clustering is that asymmetric measures of similarity or d...
Effectively managing the data generated by Large-area Community driven Sensor Networks (LCSNs) is a new and challenging problem. One important step for managing and querying such sensor network data is to create abstractions of the data in the form of models. These models can then be stored, retrieved, and queried, as required. In our OpenSense project, we advocate an adaptive model-cover drive...
یکی از نخستین گام ها در فرآیند تحلیل فراوانی منطقه ای سیلاب، اختصاص ایستگاه های هیدرومتری مورد بررسی به مناطقی است که انتظار می رود ایستگاه های هیدرومتری موجود در آن ها دارای مکانیزم تولید سیلاب مشابه باشند. این فرآیند به عنوان منطقه بندی شناخته می شود. روش های منطقه بندی مبتنی بر تحلیل خوشه ای می توانند در تشخیص گروه های ایستگاه هایی که فرآیند تولید سیلاب مشابهی دارند، نقش موثری را ایفا کنند. ...
در طراحی برنامه های کاربردی و الگوریتم های شبکه های حسگر بی سیم کاهش مصرف انرژی و افزایش طول عمر شبکه یک موضوع اساسی می باشد. امروزه، در شبکه های حسگر بی سیم، پروتکل های مسیریابی مبتنی بر خوشه بندی از طریق تقسیم گره های همسایه به خوشه های مجزا و انتخاب سرخوشه های محلی برای ترکیب و ارسال اطلاعات هر خوشه به ایستگاه مبنا و سعی در مصرف متوازن انرژی توسط گره های شبکه، بهترین کارایی را از لحاظ افزایش...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید